五月婷婷激情五月,人成电影网在线观看免费,国产精品不卡,久久99国产这里有精品视,爱爱激情网,免费看国产精品久久久久

首頁 優秀范文 鋼結構設計論文

鋼結構設計論文賞析八篇

發布時間:2023-03-20 16:17:42

序言:寫作是分享個人見解和探索未知領域的橋梁,我們為您精選了8篇的鋼結構設計論文樣本,期待這些樣本能夠為您提供豐富的參考和啟發,請盡情閱讀。

鋼結構設計論文

第1篇

關鍵詞:輕型門式剛架結構設計計算

輕型門式剛架房屋結構在我國的應用大約始于20世紀80年代初期。近十多年來得到迅速的發展,目前國內每年有上千萬平方米的輕鋼建筑工程,主要用于輕型的廠房、倉庫、體育館、展覽廳及活動房屋、加層建筑等。

單層輕型門式剛架結構是指以輕型焊接H形鋼(等截面或變截面)、熱軋H形鋼(等截面)或冷彎薄壁型鋼等構成的實腹式門式剛架或格構式門式剛架作為主要承重骨架,用冷彎薄壁型鋼(槽形、Z形等)做檁條、墻梁;以壓型金屬板(壓型鋼板、壓型鋁板)做屋面、墻面;采用聚苯乙烯泡沫塑料、硬質聚氨酯泡沫塑料、巖棉、礦棉、玻璃棉等作為保溫隔熱材料并適當設置支撐的一種輕型房屋結構體系。

在目前的工程實踐中,門式剛架的梁、柱多采用焊接H形變截面構件,單跨剛架的梁柱節點采用剛接,多跨者大多剛接和鉸接并用;柱腳可與基礎剛接或鉸接;圍護結構多采用壓型鋼板;保溫隔熱材料多采用玻璃棉。

1單層輕型門式剛架結構的特點和設計中的注意事項

1.1單層輕型門式剛架結構相對于鋼筋混凝土結構具有以下特點:

(1)質量輕

圍護結構采用壓型金屬板、玻璃棉及冷彎薄壁型鋼等材料組成,屋面、墻面的質量都很輕。根據國內工程實例統計,單層輕型門式剛架房屋承重結構的用鋼量一般為10~30kg/m2,在相同跨度和荷載情況下自重僅約為鋼筋混凝土結構的1/20~1/30。由于結構質量輕,相應地基礎可以做得較小,地基處理費用也較低。同時在相同地震烈度下結構的地震反應小。但當風荷載較大或房屋較高時,風荷載可能成為單層輕型門式剛架結構的控制荷載。

(2)工業化程度高,施工周期短

門式剛架結構的主要構件和配件多為工廠制作,質量易于保證,工地安裝方便;除基礎施工外,基本沒有濕作業;構件之間的連接多采用高強度螺栓連接,安裝迅速。

(3)綜合經濟效益高

門式剛架結構通常采用計算機輔助設計,設計周期短;原材料種類單一;構件采用先進自動化設備制造;運輸方便等。所以門式剛架結構的工程周期短,資金回報快,投資效益相對較高。

(4)柱網布置比較靈活

傳統鋼筋混凝土結構形式由于受屋面板、墻板尺寸的限制,柱距多為6米,當采用12米柱距時,需設置托架及墻架柱。而門式剛架結構的圍護體系采用金屬壓型板,所以柱網布置不受模數限制,柱距大小主要根據使用要求和用鋼量最省的原則來確定。

1.2設計中的注意事項

(1)由于門式剛架結構構件的抗彎剛度、抗扭剛度較小,結構的整體剛度較弱,因此設計時應考慮運輸和安裝過程中要采取的必要措施,防止構件發生彎曲和扭轉變形。

(2)要重視支撐體系和隅撐的布置,重視屋面板、墻面板與構件的連接構造,使其能參與結構的整體工作。

(3)組成構件的桿件較薄,設計中應考慮對制作、安裝、運輸的要求。

(4)設計中應充分考慮銹蝕對結構構件截面削弱的影響。

(5)門式剛架的梁柱多采用變截面桿件,梁柱腹板在設計時考慮利用屈曲后的強度,所以塑性設計不再適用。

(6)設計中對輕型化帶來的后果必須注意和正確處理,比如風力可使輕型屋面的荷載反向等。

2結構形式和結構布置

2.1結構形式

門式剛架的結構形式按跨度可分為單跨、雙跨和多跨,按屋面坡脊數可分為單脊單坡、單脊雙坡、多脊多坡。屋面坡度宜取1/20~1/8。單脊雙坡多跨剛架,用于無橋式吊車的房屋時,當剛架柱不是特別高且風荷載也不是很大時,依據“材料集中使用的原則”,中柱宜采用兩端鉸接的搖擺柱方案。門式剛架的柱腳多按鉸接設計,當用于工業廠房且有橋式吊車時,宜將柱腳設計成剛接。門式剛架上可設置起重量不大于3t的懸掛吊車和起重量不大于20t的輕、中級工作制的單梁或雙梁橋式吊車。

2.2結構布置

2.2.1剛架的建筑尺寸和布置。

門式剛架的跨度宜為9~36m,當柱寬度不等時,其外側應對齊。高度應根據使用要求的室內凈高確定,宜取4.5~9m。門式剛架的合理間距應綜合考慮剛架跨度、荷載條件及使用要求等因素,一般宜取6m、7.5m、9m??v向溫度區段小于300m,橫向溫度區段小于150m(當有計算依據時,溫度區段可適當放大)。

2.2.2檁條和墻梁的布置

檁條間距的確定應綜合考慮天窗、通風屋脊、采光帶、屋面材料、檁條規格等因素按計算確定,一般應等間距布置,但在屋脊處應沿屋脊兩側各布置一道,在天溝附近布置一道。側墻墻梁的布置應考慮門窗、挑檐、雨蓬等構件的設置和圍護材料的要求確定。

2.2.3支撐和剛性系桿的布置

(1)在每個溫度區段或分期建設的區段中,應分別設置能獨立構成空間穩定結構的支撐體系。

(2)在設置柱間支撐的開間,應同時設置屋蓋橫向支撐,以構成幾何不變體系。

(3)端部支撐宜設在溫度區段端部的第一或第二個開間。柱間支撐的間距應根據房屋縱向受力情況及安裝條件確定,一般取30~45m,有吊車時不宜大于60m。

(4)當房屋高度較大時,柱間支撐應分層設置;當房屋寬度大于60m時,內柱列宜適當設置支撐。

(5)當端部支撐設在端部第二個開間時,在第一個開間的相應位置應設置剛性系桿。

(6)在剛架的轉折處(邊柱柱頂、屋脊及多跨剛架的中柱柱頂)應沿房屋全長設置剛性系桿。

(7)由支撐斜桿等組成的水平桁架,其直腹桿宜按剛性系桿考慮。

(8)剛性系桿可由檁條兼做,此時檁條應滿足壓彎構件的承載力和剛度要求,當不滿足時可在剛架斜梁間設置鋼管、H型鋼或其他截面形式的桿件。

(9)當房屋內設有不小于5t的吊車時,柱間支撐宜用型鋼;當房屋中不允許設置柱間支撐時,應設置縱向剛架。

3剛架設計

3.1荷載及荷載組合

3.1.1永久荷載

永久荷載包括結構構件的自重和懸掛在結構上的非結構構件的重力荷載,如屋面、檁條、支撐、吊頂、墻面構件和剛架自重等。

3.1.2可變荷載

可變荷載包括屋面活荷載(設計屋面板和檁條時應考慮施工和檢修集中荷載,其標準值為1KN)、屋面雪荷載和積灰荷載、吊車荷載、地震作用、風荷載等。

3.1.3荷載組合

荷載組合一般應遵從《建筑結構荷載設計規范》GB50009-2002的規定,針對門式剛架的特點,《門式剛架輕型房屋鋼結構技術規程》CECS102:98給出下列組合原則:

(1)屋面均布活荷載不與雪荷載同時考慮,應取兩者中較大值。

(2)積灰荷載應與雪荷載或屋面均布活荷載中的較大值同時考慮。

(3)施工或檢修集中荷載不與屋面材料或檁條自重以外的其他荷載同時考慮。

(4)多臺吊車的組合應符合《建筑結構荷載設計規范》的規定。

(5)當需要考慮地震作用時,風荷載不與地震作用同時考慮。

3.2剛架內力和側移計算

3.2.1內力計算

對于變截面門式剛架,應采用彈性分析方法確定各種內力,只有當剛架的梁柱全部為等截面時才允許采用塑性分析方法。變截面門式剛架的內力通常采用桿系單元的有限元法(直接剛度法)編制程序上機計算。地震作用的效應可采用底部剪力法分析確定。

根據不同荷載組合下的內力分析結果,找出控制截面的內力組合,控制截面的位置一般在柱底、柱頂、柱牛腿連接處及梁端、梁跨中等截面。控制截面的內力組合主要有:

(1)最大軸壓力Nmax和同時出現的M及V的較大值。

(2)最大彎矩Mmax和同時出現的N及V的較大值。

(3)最小軸壓力Nmin和相應的M及V,出現在永久荷載和風荷載共同作用下,當柱腳鉸接時M=0。

3.2.2側移計算

變截面門式剛架的柱頂側移應采用彈性分析方法確定,計算時荷載取標準值,不考慮荷載分項系數。如果最后驗算時剛架的側移剛度不滿足要求,需采用下列措施之一進行調整:放大柱或(和)梁的截面尺寸,改鉸接柱腳為剛接柱腳;把多跨框架中的個別搖擺柱改為上端和梁剛接。

3.3剛架柱和梁的設計

(1)梁柱板件的寬厚比限值和腹板屈曲后的強度利用。(主要包括梁柱板件的寬厚比限值驗算、腹板屈曲后強度利用驗算、腹板的有效寬度驗算等內容)

(2)剛架梁柱構件的強度驗算。

(3)梁腹板加勁肋的配置。(梁腹板應在中柱連接處、較大固定集中荷載作用處和翼緣轉折處設置橫向加勁肋)

(4)變截面柱在剛架平面內的計算長度確定。

(5)變截面柱在剛架平面內的整體穩定計算。

(6)變截面柱在剛架平面外的整體穩定計算。

(7)斜梁和隅撐的強度和穩定性計算。

(8)節點設計。(包括斜梁與柱的連接及斜梁拼接、柱腳設計、牛腿設計、搖擺柱與斜梁的連接構造等內容)

4輔屬結構構件設計

4.1壓型鋼板設計

(1)壓型鋼板材料的選擇可根據建筑功能、使用條件、使用年限和結構形式等因素考慮,鋼板基板的材料有Q215鋼和Q235鋼,工程中多用Q235-A鋼。

(2)壓型鋼板的截面形式較多,根據波高的不同,一般分為低波板、中波板和高波板。波高越高,截面的抗彎剛度就越大,承受的荷載也就越大。

(3)壓型鋼板的強度和撓度可取單槽口的有效截面按受彎構件計算。計算內容包括壓型鋼板腹板的剪應力計算、支座處腹板的局部受壓承載力計算、撓度限值驗算等。

(4)壓型鋼板尚應滿足其他相關構造規定。

4.2檁條設計

(1)檁條的截面形式可分為實腹式和格構式兩種。當檁條跨度不大于9m時,應優先選用實腹式檁條。

(2)檁條屬于雙向受彎構件,在進行內力分析時應沿截面兩個形心主軸方向計算彎矩。

(3)檁條應進行強度計算、整體穩定計算、變形計算。

(4)檁條尚應滿足其他相關構造規定。

4.3墻梁、支撐設計

(1)墻梁一般采用冷彎卷邊槽鋼,有時也可采用卷邊Z形鋼。

(2)墻梁在其自重、墻體材料和水平風荷載作用下,也是雙向受彎構件。

(3)墻梁應盡量等間距設置,在墻面的上沿、下沿及窗框的上沿、下沿處應設置一道墻梁。為減少豎向荷載作用下墻梁的豎向撓度,可在墻梁上設置拉條,并在最上層墻梁處設斜拉條將拉力傳至剛架柱。

(4)墻梁可根據柱距的大小做成跨越一個柱距的簡支梁或兩個柱距的連續梁。

(5)門式剛架結構中的交叉支撐和柔性系桿可按拉桿設計,非交叉支撐中的受壓桿件及剛性系桿按壓桿設計。

(6)剛架斜梁上橫向水平支撐的內力,根據縱向風荷載按支承于柱頂的水平桁架計算,并計入支撐對斜梁起減少計算長度作用而承受的力,對于交叉支撐可不計入壓桿的受力。

(7)剛架柱間支撐的內力,應根據該柱列所受縱向風荷載按支承于柱腳的豎向懸臂桁架計算,并計入支撐對柱起減少計算長度而應承受的力,對于交叉支撐可不計壓桿的受力。當同一柱列設有多道柱間支撐時,縱向力在支撐間可平均分配。

5小結

綜上所述,輕型門式剛架結構設計應遵守以下原則:

(1)保證結構的整體性。門式剛架屬于平面結構,它們在縱向構件、支撐和圍護結構的聯系下形成空間的穩定體系,結構只有組成空間穩定整體,才能承擔各種荷載和其他外在效應。

第2篇

【關鍵詞】鋼結構,穩定設計,施工原則

【 abstract 】 steel in the stability problem is steel structure design of the main problems for solving, once appear, the steel structure of the instability accident, not only for the economy caused heavy losses, but also caused the personnel casualties. This paper introduces the design of the steel structure stability basic concept, this paper analyzes the design and construction of steel structure stability principle.

【 key words 】 steel structure, stable design, construction principle

中圖分類號:S611文獻標識碼:A 文章編號:

現代工程史上不乏因失穩而造成的鋼結構事故,其中影響最大的是1907 年加拿大魁北克一座大橋在施工中破壞, 9000 噸鋼結構全部墜入河中,橋上施工的人員75 人遇難。破壞是由于懸臂的受壓下弦失穩造成的。而美國哈特福特城的體育館網架結構,平面 92m x 110m,突然于 1978年破壞而落地,破壞起因可能是壓桿屈曲。以及1988 年加拿大一停車場的屋蓋結構塌落, 1985 年土耳其某體育場看臺屋蓋塌落,這兩次事故都和沒有設置適當的支撐有關。在我國 1988 年也曾發生 l3.2 xl7.99m網架因腹桿穩定位不足而在施工過程中塌落的事故。從上可以看出,鋼結構中的穩定問題是鋼結構設計中以待解決的主要問題,一旦出現了鋼結構的失穩事故,不但對經濟造成嚴重的損失,而且會造成人員的傷亡,所以我們在鋼結構設計中,一定要把握好這一關。目前,鋼結構中出現過的失穩事故都是由于設計者的經驗不足,對結構及構件的穩定性能不夠清楚,對如何保證結構穩定缺少明確概念,造成一般性結構設計中不應有的薄弱環節。另一方面是由于新型結構的出現,如空間網架,網殼結構等,設計者對其如何設計還沒有完全的了解。

一、鋼結構穩定設計的基本概念

1、強度與穩定的區別

強度問題是指結構或者單個構件在穩定平衡狀態下由荷載所引起地最大應力(或內力)是否超過建筑材料的極限強度,因此是一個應力問題。極限強度的取值取決于材料的特性,對混凝土等脆性材料,可取它的最大強度,對鋼材則常取它的屈服點。

2、鋼結構失穩的分類

(1)第一類穩定問題或者具有平衡分岔的穩定問題(也叫分支點失穩)。完善直桿軸心受壓時的屈曲和完善平板中面受壓時的屈曲都屬于這一類。

(2)第二類穩定問題或無平衡分岔的穩定問題(也叫極值點失穩)。由建筑鋼材做成的偏心受壓構件,在塑性發展到一定程度時喪失穩定的能力,屬于這一類。

(3)躍越失穩是一種不同于以上兩種類型,它既無平衡分岔點,又無極值點,它是在喪失穩定平衡之后跳躍到另一個穩定平衡狀態。區分結構失穩類型的性質十分重要,這樣才有可能正確估量結構的穩定承載力。隨著穩定問題研究的逐步深入,上述分類看起來已經不夠了。設計為軸心受壓的構件,實際上總不免有一點初彎曲,荷載的作用點也難免有偏心。因此,我們要真正掌握這種構件的性能,就必須了解缺陷對它的影響,其他構件也都有個缺陷影響問題。另一方面就是深入對構件屈曲后性能的研究。

二、鋼結構穩定設計和施工原則

1、結構穩定設計原則

(1)結構整體布置必須考慮整個體系以及各組成部分的穩定性要求。目前, 結構大多數是按照平面體系來設計的,如桁架、 框架都是如此。保證這些平面結構不出現失穩, 需要從結構整體布置來考慮,即必須設置必要的支撐構件。也就是說,結構構件的平面內和平面外的穩定計算必須和結構布置相一致。

(2)結構計算簡圖和實用計算方法所依據的簡圖相一致。目前設計單層和多層框架結構時, 經常不進行框架穩定分析而是代之以框架柱穩定計算。在采用這種方法時,計算框架穩定時用到的計算長度系數應通過框架整體穩定分析得出,這樣才能使柱穩定計算等效于框架穩定計算。然而,實際框架多種多樣, 而設計中為了簡化計算工作, 需要設定一些條件??蚣芨髦姆€定參數及桿件穩定計算的常用方法,往往是依據一定的簡化假設或者典型情況得出的, 設計者必須明確所設計的結構符合這些假設時才能正確應用。

(3)結構的細部構造和構件的穩定計算必須相互配合。結構計算和構造設計相符合一直是結構設計中大家都十分關心的問題。對要求傳遞彎矩和不傳遞彎矩的節點連接, 應分別賦予它足夠的剛度和柔度,對桁架節點應盡量減少桿件偏心,這些都是設計者處理構造細部時經??紤]到的。但是,當涉及穩定性能時, 構造上時常有不同于強度的要求或特殊考慮。例如, 簡支梁就抗彎強度來說, 對不動鉸支座的要求僅僅是阻止位移,同時允許在平面內轉動。然而在處理梁整體穩定時上述要求就不夠了,支座還必須能夠阻止梁繞縱軸扭轉,同時允許梁在水平平面內轉動和梁端截面自由翹曲,以符合穩定分析所采取的邊界條件?,F行《鋼結構設計規范》第 4 .2.5條已明確規定梁的支座處應采取構造措施以防止梁截面的扭轉。

2、鋼結構施工安裝中的穩定問題

鋼結構構件是在特定的狀態下使用的。在相對較為隨機的施工狀態下,其系統或構件的穩定條件會發生較大的變化;所以在安裝時, 要充分考慮它在各種條件下的構件單體穩定和結構整體穩定問題, 以確保施工安全。

構件單體穩定問題是指一個構件在工地堆放、 翻身、 吊裝、 就位過程中發生彎曲、 彎扭破壞和失穩。因而對于較薄而大的構件均應考慮這一問題。必要時要用臨時支撐對構件的弱軸方向進行加固。如單片平面桁架及高寬比相當大的工字梁等。結構整體穩定問題是指結構在吊裝過程中支撐體系尚未形成,結構就要承受某些荷載 (包括自重 )。所以在擬定吊裝順序時必須充分考慮到這一因素, 保證吊裝過程中每一步結構都是穩定的。若有問題可加臨時纜風等措施解決。

3、鋼結構穩定設計仍存在和需要注意的幾個問題

(1)鋼材為彈塑性材料,而目前大多數結構分析還是把結構看成完善的結構體系, 按完全彈性的材料做一階分析,忽略客觀存在的缺陷 (如殘余應力、 初彎曲、 初偏心等, 工字鋼和 H 形鋼殘余應力分布見圖 1), 使穩定計算和現實結構的穩定承載能力存在較大的差距。尤其殘余應力對穩定承載力影響非常復雜,不僅與構件生產工藝有關,還因構件幾何

尺寸不同而異。以梁、 柱構件為例, 殘余應力在常用的彈塑性失穩狀態長度下對穩定承載力有較大影響, 對以彈性狀態工作為主以及較短構件的影響較小。

(2)鋼結構穩定性研究中存在許多隨機因素的影響, 一般情況下,影響鋼結構穩定性隨機因素可分成三類:物理、幾何不確定性;統計不準確性;模型不確定性。目前在網殼結構穩定性研究中,梁——柱單元理論已成為主要的研究工具。但梁——柱單元是否能真實反映網架結構的受力狀態還有待研究。只有進一步深入研究這些不穩定因素, 鋼結構穩定理論才能進一步完善。

(3)按照極限狀態設計法, 結構設計的基本表達式就是S≤R,各種建筑結構設計規范都應當執行這一規則, 規范中的設計計算公式也應當符合基本表達式的形式。然而,現行的《鋼結構設計規范》( GB 50017- 2003)中的大部分計算公式,尤其是關于穩定方面的計算表達方式是不符合這個規則的。規范中關于軸心受力構件計算公式是: ≤ f ,顯然,這個計算公式與基本表達式的形式是不符的。這樣的表達式,不僅沒有清楚地表明荷載作用應該小于抗力這一基本關系,反而攪亂了人們對穩定問題的正確理解。鋼結構設計規范只要稍微變換一下,就可以解決上述不足。比如將軸心受力構件計算公式改為: N≤ φAf 的形式。此表達式既避免概念模糊,又與按極限狀態設計方法的基本表達式一致。其它穩定計算表達式也可做類似的變動。

參考文獻:

[1] 紀榮洋,劉健. 鋼結構穩定問題的探索與分析[J]. 萊鋼科技, 2009,(02) .

[2] 陳妍. 鋼結構穩定設計原則及特點分析[J]. 中國新技術新產品, 2010,(09) .

[3] 譚磊. 鋼結構穩定問題的可靠性研究探討[J]. 陜西建筑, 2006,(01) .

第3篇

關鍵詞:輕鋼結構結構體系組合樓蓋

一、前言

輕鋼結構住宅相比于傳統住宅,有其突出的優點:

(1)輕鋼結構配件制作工廠化和機械化程度高,商品化程度高。

(2)現場施工速度快,主要為干作業,有利于文明施工。

(3)鋼結構建筑是環保型的可持續發展產品。

(4)自重輕,抗震性能好。

(5)綜合經濟指標不高于鋼筋混凝土結構。

隨著我國鋼產量的快速增長,對用鋼政策由限制用鋼到合理用鋼到積極用鋼,國務院1999年頒發的72號文件提出要發展鋼結構住宅產業,在沿海大城市限期停止使用粘土磚。因此開發輕鋼結構住宅體系已成為當前住宅結構研究中的熱點。不過,多層輕鋼結構的研究還處于起動階段,研究力度還不夠,實際設計和施工還存在不少爭議和問題。這些都急需解決,以利于輕鋼住宅在我國健康快速發展。

二、結構體系選型

對低、多層住宅,目前國內外常用的結構體系主要有:

(一)冷彎薄壁型鋼體系

構件用薄鋼板冷彎成C形、Z形構件,可單獨使用,也可組合使用,桿件間連接采用自攻螺釘。這種體系節點剛性不易保證,抗側能力較差,一般只用于1~2層住宅或別墅。筆者處理的幾個舊房加層,如薊縣國稅局、天津港派出所等改造工程,使用了該體系,效果較好。

(二)框架

目前,這種體系在多層鋼結構住宅中應用最廣。縱橫向都設成鋼框架,門窗設置靈活,可提供較大的開間,便于用戶二次設計,滿足各種生活需求。鋼框架考慮樓蓋的組合作用,運用在低多層住宅中,一般都能滿足抗側要求。但是由于目前框架柱以H型鋼為主,弱軸方向梁柱連接的剛性難以保證,因此設計施工時須慎重處理。

(三)框架支撐體系

在風載或地震作用較大區域,為提高體系的抗側剛度,增加軸交支撐或偏交支撐效果很好。這種體系為多重抗側體系,而且梁柱節點,柱腳節點可設計成鉸接、半剛接,施工構造簡單,基礎主要承受軸力,體形較小,因此成為人們青睞的對象。

(四)框架剪力墻體系

在低多層住宅中,可以應用傳統的剪力墻體系,如鋼筋混凝土剪力墻或鋼板剪力墻。目前正在研究的空腔結構板是一種理想的抗側結構??涨唤Y構板是一種新型的輕質板材,采用黃紙制成具有眾多等邊空腔結構的板狀基架,然后經浸漬而成。該板材與鋼框架可靠連接,便可形成新型剪力墻。另外美國,澳大利亞等國還開發了交錯桁架體系,比較新穎。

三、主要構件設計

(一)柱

前已述及,鋼結構住宅一般為大開間,框架柱在兩個方向都承受較大的彎矩,同時應該考慮強柱弱梁的要求。而目前廣泛使用的焊接H型鋼或I字熱軋鋼截面,強弱軸慣性矩之比3~10,勢必造成材料浪費。因此對于軸壓比較大,雙向彎矩接近,梁截面較高的框架柱采用雙軸等強的鋼管柱或方鋼管混凝土柱是適宜的。對于方鋼管混凝土柱,不僅截面受力合理,同時可以提高框架的側向剛度,防火性能好,而且結構破壞時柱體不會迅速屈曲破壞。因此,盡管平面受力結構中,選用H型鋼或I字鋼在受力上還是合理的但總體上,箱形鋼管柱尤其是方鋼管混凝土柱應得到廣泛應用。方鋼管混凝土柱將是鋼結構住宅發展的主要方向,但由于缺乏相應的規范、規程,目前在住宅中應用還很少。尤其鋼管砼梁、柱的連接較為復雜,不利于工廠制作和現場施工,應加大力度開發研究。

(二)樓蓋

在多層輕鋼房屋中,樓蓋結構的選擇至關重要,它除了將豎向荷載直接分配給墻柱外,更主要的作用是保證與抗側力結構的空間協調作用;另外從抗震角度來看,還應采用相應的技術和構造措施減輕樓板自重。常用的樓蓋結構有:壓型鋼板-現澆混凝土組合樓板,現澆鋼筋混凝土板以及鋼-混凝土疊合板,而以第一種最為常用。目前,在多層輕鋼房屋整體分析時,還普遍不考慮樓蓋與鋼梁的組合作用,即使設置抗剪鍵,也偏保守地假設鋼結構承受全部荷載,這樣不僅增加材料用量和結構自重,反而會造成強梁弱柱的不利情況。有一6層算例,表1、表2分別反映了考慮樓蓋組合作用對梁剛度以及結構整體剛度的影響。

表1截面慣性矩對比

構件名稱截面慣性矩組合前后的對比

主梁(負彎矩區)1.51(2.22)1.47

主梁(正彎矩區)1.51(4.28)2.83

次梁0.797(2.48)3.11

注:括號內為考慮年組合作用的情況

表2結構位移對比

結果工況1工況2工況3

樓層梁撓度16.9(10.9)16.9(10.2)/

屋蓋梁撓度35.5(35.4)34.3(34.2)/

底層層間位移16.9(10.2)4.8(3.7)8.4(5.9)

頂點位移/18.2(13.8)49.9(31.0)

注:括號內為考慮年組合作用的情況

算例表明,考慮組合作用后主梁的剛度大大增加,使得梁的撓度和地震作用下柱頂的側移大為減少,此考慮組合作用應予關注。為使樓層高度減到最小,提供更大的空間,組合扁梁樓蓋也成為一種趨勢。

(三)支撐體系

支撐分軸交支撐和近年發展起來的偏交支撐兩種,前者耐震能力較差,后者在強震作用下具有良好的吸能耗能性能,而且為門窗洞的布置提供了有利條件,目前國內用的還很少,建議在高烈度區首選偏交支撐。剪切型耗能梁段,加勁肋按以下公式設計:

a=29tw-d/5,(γp=±0.09rad)(1)

a=38tw-d/5,(γp=±0.06rad)(2)

a=56tw-d/5,(γp=±0.03rad)(3)

式中,a―――加勁肋間距,d―――梁高,―――腹板厚度,γp―――塑性轉角;彎曲型耗能梁段還需在梁段端點外1.5bf處加設加勁肋。

(四)節點抗震設計

框架梁柱節點一般采用兩種連接方法,根據"常用設計法",即翼緣連接承受全部彎矩,梁腹板只承受全部剪力的假定進行設計。震害表明,這種設計不能有效滿足"強節點弱桿件"的抗震要求,在高烈度區隱患很大。改進的框架節點設計,在梁端上下翼緣加焊楔形蓋板或者將梁端上下翼緣局部加寬蓋板面積或加大的翼緣截面面積主要由大震下的驗算公式確定:

式中:為基于極限強度最小值的節點連接最大受彎承載力,全部由局部加大后的翼緣連接承擔;為梁件的全塑性受彎承載力;為基于極限強度最小值的節點連接最大受剪承載力,僅由腹板的連接承擔;為梁的凈跨;為梁在重力荷載代表值作用下按簡支梁分析的梁端截面剪力設計值。

四、結論

1)低、多層輕鋼結構住宅考慮樓蓋與鋼梁的組合作用,可顯著減小主梁撓度和柱頂位移。

第4篇

1.1液壓缸的速度-負載特性

由液壓缸組成的液壓回路多種多樣,進油路節流調速回路為例來分析液壓缸的速度-負載特性。

1.2缸體的強度參數的影響

液壓缸的受力狀態是相當復雜的,常因疲勞破壞而發生失效。目前的強度分析主要根據彈性強度理論,對于大型厚壁長行程液壓缸的強度主參數,主要體現在缸筒厚度的計算,其等效為等厚度受均勻分布內壓的厚壁圓筒液壓缸體。

1.5緩沖裝置的結構參數的影響

在實際的設計生產中,要想保證緩沖結構能夠正常穩定地工作。就必須保證活塞桿和缸筒之間有良好的同軸度。要想保證這個同軸度,就必須保證好活塞桿和缸筒分別與前后端蓋、活塞的間隙配合及各部件的形位公差。在實際的生產應用過程中,由于受到設計、加工、裝配及使用等各種因素的影響,這一同軸度很難得到保證,這就導致了液壓缸在使用過程中常常出現問題。為此,文獻介紹了一種比較實用的液壓缸緩沖結構——浮動緩沖裝置。該裝置通過在缸頭和缸底兩端分別設置緩沖裝置來補償在生產使用過程中造成的偏心,同時受活塞桿和缸筒同軸度的影響很小,且工作可靠,使用壽命長,緩沖效果好,在設計制造過程中也很容易實現。

2車載液壓缸結構設計

設計液壓缸缸筒時,應正確確定各部分的尺寸,以保證液壓缸有足夠的輸出力、運動速度和有效行程,同時還必須具有一定的強度,能足以承受液壓力、負載力和意外的沖擊力。液壓缸工作壓力的確定液壓缸工作壓力的確定,應能滿足液壓設備工作時對對動力提出的要求,同時,能安全、可靠地進行工作。本設計采用類比選定法,確定車載液壓缸工作壓力pN為25MPa,液壓缸承受的最大負載為50kN,缸筒材料的許用應力150MPa。

3結論

第5篇

關鍵詞:鋼筋混凝土;高層結構;結構設計;

中圖分類號:TU375 文獻標識碼:A 文章編號:

1、高層建筑結構形式分類

1.1 框架結構體系

框架結構體系采用梁、柱組成的結構體系作為建筑豎向承重結構,并同時承受水平荷載,適用于多層或高度不大的高層建筑??蚣芙Y構的布置要注意對稱均勻和傳力途徑直接。傳統的樓蓋結構布置采用主次梁的作法為主,逐步向扁梁或無梁樓蓋發展??蚣苤强蚣芙Y構的主要豎向承重和抗側力構件, 以受壓應力為主。

1.2 剪力墻結構體系

剪力墻結構體系是利用建筑物的墻體作為豎向承重和抵抗側力的結構體系。剪力墻的間距受樓板構件跨度的限制,一般為3~8 米。因而剪力墻結構適用于要求小房間的住宅、旅館等建筑。剪力墻一般采用鋼筋混凝土材料,可分為全部為現澆的剪力墻,全部用預制墻板裝配而成的剪力墻,內墻為現澆、外墻為預制墻板的剪力墻。

1.3 框架——剪力墻結構體系

框架——剪力墻結構是將框架和剪力墻結合在一起而形成的結構形式。它既有框架結構平面布局靈活、適用性強的優點,又有較好的承受水平荷載的能力, 是高層建筑中應用比較廣泛的一種結構形式。

1.4 筒體結構

隨著建筑物高度的增加,傳統的框架結構體系、框架——剪力墻結構體系已不能很好地滿足結構在水平荷載作用下強度和剛度的要求。筒體體系在抵抗水平作用方面具有良好的剛度,并能形成較大的使用空間,筒體是由框架和剪力墻結構發展而成。它是由若干片縱橫交接的框架或剪刀墻所圍成的筒狀封閉骨架。

2、結構概念設計應注意的問題

2.1 在結構體系上,應重視結構的選型和平、立面布置的規則性,擇優選用抗震和抗風性能好且經濟合理的結構體系。結構應具有明確的計算簡圖和合理的傳遞地震力途徑,結構在兩個主軸方向的動力特性宜相近。

2.2 一般工程都僅進行小震下的彈性設計,通過概念設計和構造措施保證“中震可修,大震不倒”,但沒有驗算和證實。對抗震設防烈度較高地區的特別重要建筑和超限建筑,審查專家往往會提出更具體的性能化設計目標:(1)中震或大震不屈服設計;(2)中震或大震彈性設計;(3)要求設計單位確保實現“三水準”的設計目標。

2.3 建筑物是應當有個性的,不應當千面一物。基于性能的抗震設計理念的特點是,使抗震設計從宏觀定性的目標向具體量化的多重目標過渡,允許按照業主的要求選擇不同層次的抗震性能目標作為設計者的設計依據。

2.4 水平地震作用是雙向的,結構布置應使結構能抵抗任意方向的地震作用,應使結構沿平面上兩個主軸方向具有足夠的剛度和抗震能力;結構剛度選擇時,雖可考慮場地特征選擇結構剛度以減少地震作用效應,但是也要注意控制結構變形的增大,過大的變形將會因P-Δ效應過大而導致結構破壞;結構除需要滿足水平方向剛度和抗震能力外,還應具有足夠的抗扭剛度和抵抗扭轉震動的能力。

2.5 在一個獨立的結構單元內,應避免應力集中的凹角和狹長的縮頸部位;避免在凹角和端部設置樓、電梯間;減少地震作用下的扭轉效應。豎向體型盡量避免外挑,內收也不宜過多、過急,結構剛度、承載力沿房屋高度方向宜均勻、連續分布、避免造成結構的軟弱或薄弱的部位。應避免因部分結構或構件破壞而導致整個結構喪失抗震能力或對重力荷載的承載力。根據具體情況,結構單元之間應遵守牢固連接或有效分離的方法。3、結構選型中常見的問題

3.1 結構規則性的問題

在建筑結構設計中,對于結構規則性的要求現行規范增加了很多的新的規定。比如平面規則性信息、嵌固端上下層剛度比較的信息以及豎向規則性信息等,并且在新的規范中,采用強制性的規定,所以在高層建筑物結構設計時,應該遵循設計的規范內容,從而可以有效避免施工中要求設計的改變。

3.2 嵌固端的設計問題

目前很多的高層建筑物都有兩層或者兩層以上的人防和地下室,所以嵌固端可能設置在人防的頂板位置處,也可能設置在地下室頂板的位置處。在設置嵌固端時,建筑師以及結構設計師很容易忽略嵌固端的設置帶來的問題,如:嵌固端上下層的剛度、樓板的設計以及上下層抗震等級的統一性以及結構整體計算時嵌固端的位置等一系列的問題[3],如果在設計中忽略任何一個問題都可能對高層建筑結構造成安全隱患,所以這就要求建筑師以及結構設計師在鋼筋混凝土高層結構設計時,注意嵌固端設置的問題。

3.3 短肢剪力墻設計的問題

在鋼筋混凝土高層結構設計的規范中,對短肢剪力墻在高層建筑中應用有很多的限制,所以在高層建筑設計中,建筑師以及結構設計師應該盡量少設置或者不設置短肢剪力墻,從而可以有效避免由于設置短肢剪力墻帶來的問題。

3.4 結構超高問題

在鋼筋混凝土高層結構設計中,對于高層建筑的總高度在抗震規范中有嚴格的限制,特別是新規范中,除了將原來的限制高度設置為A級高度,增加了B級建筑物的高度,所以在高層結構設計時,應該嚴格控制建筑物高度,從而可以減少重新設計以及不符合要求等問題,減少對高層結構設計以及工程工期的影響。

4、地基基礎設計

在地基基礎設計中要注意滿足地方性規程的要求。由于我國幅員遼闊,地質條件差異性大,作為國家標準,僅僅一本《地基基礎設計規范》無法對全國各地的地基基礎都進行詳細的描述和規定。因此,作為建立在國家標準之下的地方標準,地方性的“地基基礎設計規程”能夠將各地方的地基基礎類型和設計處理方法等一些成熟的經驗描述和規定得更為詳細和準確。所以,在進行地基基礎設計時,一定要對地方規程進行深入地學習,以避免對整個結構設計或后期設計工作造成較大的影響。

5、計算與分析

5.1 計算模型的選取

對于常規結構,可采用樓板整體平面內無限剛假定模型;對于多塔或錯層結構,可采用樓板分塊平面內無限剛模型;對于樓板局部開大洞、塔與塔之間上部相連的多塔結構等可采用樓板分塊平面內無限剛,并帶彈性連接板帶模型;而對于樓板開大洞有中庭等共享空間的特殊樓板結構或要求分析精度高的高層結構則可采用彈性樓板模型。

5.2 抗震等級的確定

對常規高層建筑,與主樓連為整體的裙樓的抗震等級不應低于主樓的抗震等級;對于地下室部分,當地下室頂板作為上部結構的嵌固部位時,地下一層的抗震等級應與上部結構相同,地下一層以下的抗震等級可逐層降低一級,但不低于四級,地下室中超出上部主樓相關范圍且無上部結構的部分,其抗震等級可根據具體情況采用三級或四級。

5.3 非結構構件的分析計算

在高層建筑結構設計中,很多的建筑由于對建筑物的功能或者美觀要求,會布置一些非主體承重體系內的非結構構件,對于這些構件,特別是對于高層建筑物樓頂的裝飾構件,由于地震作用的鞭梢效應比較大,所以在進行分析計算時,應該嚴格遵守規范中的相關規定,并滿足相關抗震措施要求。

結束語

經濟的快速發展,使得高層建筑在中國興起并發展的如火如荼,其建筑手段和設計也變得科技性更強。建筑工程的質量直接關系到人們的生命財產安全,因此,對于這項復雜而科技含量高的工作,如何通過合理的設計使得高層建筑達到高質量的同時也滿足人們居住舒適性需求,是每個建筑工作者必須考慮和解決的事情。

參考文獻

[1] 王小平. 鋼筋混凝土高層結構設計常見問題淺析[J]. 中國高新技術企業. 2009(13)

第6篇

論文摘要:我國鋼結構住宅起步很晚,只是改革開放后,從國外引進了一些低層和多層鋼結構住宅,才使我們有了學習與借鑒的機會。大規模研究開發、設計制造、施工安裝鋼結構住宅還是近二三年才發展起來。由于具備其他結構無法比擬的優點,鋼結構住宅已經給住宅產業和建筑行業帶來了一場深層次的革命,從設計、施工、到一系列新材料的使用都出現了革命性的變化,因而在國際范圍內代表了未來的住宅發展新模式。

0 引言

高層鋼結構建筑在國外已有110多年的歷史,1883年最早一幢鋼結構高層建筑在美國芝加哥拔地而起,到了二次世界大戰后由于地價的上漲和人口的迅速增長,以及對高層及超高層建筑的結構體系的研究日趨完善、計算技術的發展和施工技術水平的不斷提高,使高層和超高層建筑迅猛發展。鋼筋混凝土結構在超高層建筑中由于自重大,柱子所占的建筑面積比率越來越大,在超高層建筑中采用鋼筋混凝土結構受到質疑;同時高強度鋼材應運而生,

在超高層建筑中采用部分鋼結構或全鋼結構的理論研究與設計建造可說是同步前進。

1 鋼結構穩定設計的原則

穩定性是鋼結構的一個突出問題。在各種類型的鋼結構中,都會遇到穩定問題。對于這個問題處理不好,將會造成不應有的損失。

根據穩定問題在實際設計中的特點提出了以下三項原則并具體闡明了這些原則,以更好地保證鋼結構穩定設計中構件不會喪失穩定。

1.1 結構整體布置必須考慮整個體系以及組成部分的穩定性要求。

目前結構大多數是按照平面體系來設計的,如桁架和框架都是如此。保證這些平面結構不致出平面失穩,需要從結構整體布置來解決,亦即設計必要的支撐構件。這就是說,平面結構構件的出平面穩定計算必須和結構布置相一致。就如上述的1988年加拿大一停車場的屋蓋結構塌落,1985年土耳其某體育場看臺屋蓋塌落,這兩次事故都和沒有設置適當的文撐而造成出平面失穩。

1.2 結構計算簡圖和實用計算方法所依據的簡圖相一致,這對框架結構的穩定計算十分重要。

目前任設計單層和多層框架結構時,經常不作框架穩定分折而是代之以框架柱的穩定計算。在采用這種方法時,計算框架柱穩定時用到的柱計算長度系數,自應通過框架整體穩定分析得出,才能使柱穩定計算等效于框架穩定計算。然而,實際框架多種多樣,而設計中為了簡化計算工作,需要設定一些典型條件。

1.3 設計結構的細部構造和構件的穩定計算必須相互配合,使二者有一致性。

結構計算和構造設計相符合,一直是結構設計中大家都注意的問題。對要求傳遞彎矩和不傳遞彎矩的節點連接,應分別賦與它足夠的剛度和柔度,對桁架節點應盡量減少桿件偏心這些都是設計者處理構造細部時經??紤]到的。但是,當涉及穩定性能時,構造上時常有不同于強度的要求或特殊考慮。例如,簡支梁就抗彎強度來說,對不動鉸支座的要求僅僅是阻止位移,同時允許在平面內轉動。然而在處理梁整體穩定時上述要求就不夠了。支座還需能夠阻止梁繞縱軸扭轉,同時允許梁在水平平面內轉動和梁端截面自由翹曲,以符合穩定分析所采取的邊界條件。

2 鋼結構住宅的設計流程

2.1 判斷結構是否適合用鋼結構

鋼結構通常用于高層、大跨度、體型復雜、荷載或吊車起重量大、有較大振動、高溫車間、密封性要求高、要求能活動或經常裝拆的結構。

2.2 結構選型與結構布置

在鋼結構設計的整個過程中都應該被強調的是“概念設計”,它在結構選型與布置階段尤其重要,對一些難以作出精確理性分析或規范未規定的問題,可依據從整體結構體系與分體系之間的力學關系、破壞機理、震害、試驗現象和工程經驗所獲得的設計思想,從全局的角度來確定控制結構的布置及細部措施。運用概念設計可以在早期迅速、有效地進行構思、比較與選擇。所得結構方案往往易于手算、概念清晰、定性正確,并可避免結構分析階段不必要的繁瑣運算。

2.3 預估截面

結構布置結束后,需對構件截面作初步估算。主要是梁柱和支撐等的斷面形狀與尺寸的假定。

鋼梁可選擇槽鋼、軋制或焊接H型鋼截面等。根據荷載與支座情況,其截面高度通常在跨度的1/20~1/50之間選擇。翼緣寬度根據梁間側向支撐的間距按l/b限值確定時,可回避鋼梁的整體穩定的復雜計算,這種方法很受歡迎。確定了截面高度和翼緣寬度后,其板件厚度可按規范中局部穩定的構造規定預估。

柱截面按長細比預估。通常50

2.4 結構分析

目前鋼結構實際設計中,結構分析通常為線彈性分析,條件允許時考慮P-Δ,p-δ。

新近的一些有限元軟件可以部分考慮幾何非線性及鋼材的彈塑性能.這為更精確的分析結構提供了條件。

2.5 構件設計

構件的設計首先是材料的選擇。通常主結構使用單一鋼種以便于工程管理,經濟考慮,也可以選擇不同強度鋼材的組合截面。構件設計中,現行規范使用的是彈塑性的方法來驗算截面,這和結構內力計算的彈性方法并不匹配。當前的結構軟件,都提供截面驗算的后處理功能。由于程序技術的進步,一些軟件可以將驗算時不通過的構件,從給定的截面庫里選擇加大一級,并自動重新分析驗算,直至通過,如sap2000等。這是常說的截面優化設計功能之一。它減少了結構師的很多工作量。

2.6 節點設計

連接節點的設計是鋼結構設計中重要的內容之一。在結構分析前,就應該對節點的形式有充分思考與確定。常常出現的一種情況是,最終設計的節點與結構分析模型中使用的形式不完全一致,這必須避免。按傳力特性不同,節點分剛接,鉸接和半剛接。

2.7 圖紙編制

鋼結構設計出圖分設計圖和施工詳圖兩階段,設計圖為設計單位提供,施工詳圖通常由鋼結構制造公司根據設計圖編制,有時也會由設計單位代為編制。由于近年鋼結構項目增多和設計院鋼結構工程師缺乏的矛盾,有設計能力的鋼結構公司參與設計圖編制的情況也很普遍。

設計圖及施工詳圖的內容表達方法及出圖深度的控制,目前比較混亂,各個設計單位之間及其與鋼結構公司之間

不盡相同。初學者可參考他人的優秀設計并參考相關的工具書,并依據規范規定編制。

3 鋼結構住宅設計中應注意的問題:

3.1 鋼結構,有低層和多層之分。低層一般不超過3層,用于別墅;多層用于公寓。本文介紹多層公寓住宅鋼結構設計中一些問題。

3.2 超過9層為高層。10~12層又稱小高層。抗震規范GB50011對12層以下和12層以上的房屋提出不同要求。住宅鋼結構一般不宜超過12層。

3.3 結構抗震性能與結構布置規則性有很大關系。結構布置不規則,地震時易損壞,而且除彈性設計外還要作彈塑性層間位移驗算。因此應盡量使結構布置符合規則性要求。

第7篇

【關鍵詞】鋼結構,建筑,發展

目前國內外的建筑結構主要是混凝土結構和鋼結構,混凝土結構目前在我國應用較多,而鋼結構的應用沒有混凝土那樣的普遍,但其發展具有很大的潛力。由于混凝土結構有很多缺點,和科技的進步和環保意識的提高,鋼結構得到了很大的發展。

一、選題背景

近數十年來,前蘇聯、美國、日本三個國家一直是世界上鋼產量居前三位的國家,其鋼產量輪流位居世界第一位。因此,這幾個國家的建筑鋼結構建設事業蓬勃發展。而在同一時期,我國在這方面的發展則比較緩慢,水平也相對落后。近幾年來,隨著我國改革開放政策的實行和推進,我國的經濟建設工作取得了突飛猛進的進展。在此期間,我國的鋼產量一躍成為世界第一位。1996年,我國鋼產量首次突破億噸大關;1998年我國鋼產量已達11434萬t,而且每年增產300萬t.鋼產量的增長為發展我國建筑鋼結構建設事業創造了極好的時機。同時,鋼結構在我國發展迅速,應用擴大、用量增大,涌現出一大批優秀鋼結構設計人員,設計軟件和科研成果不斷開發,修訂了鋼結構設計、施工、質量驗收規范,編寫技術規程、設計圖集90多本,出版了大量鋼結構專業教材,論文著作和應用手冊。鋼結構設計規范修訂已經啟動,鋼材單設一章,鋼材產品標準修訂基本完成。一大批有實力的鋼結構安裝企業承擔了國內重點大型鋼結構工程安裝,新技術、新工藝、新設備層出不窮,其施工安裝水平達到了國際先進水平。鋼結構配套產品齊全。2007年10月經科技部批準成立的“國家鋼結構工程技術研究中心”在中冶集團建筑研究總院成立。2008年6月上海同濟大學成立建筑鋼結構教育部工程研究中心。根據協會這幾年陸續統計出來的數據顯示,近幾年鋼結構消耗鋼材的總量,2000年為850萬噸,今年應該在2300萬噸左右,到2010年達到2600萬噸,占鋼材產量從現在的4.28%,發展到2010年達到5.5%。這充分說明我們鋼結構行業有很大的發展空間,發展的情況基本上還比較正常。

二、鋼結構的定義

鋼結構是把鋼板、圓鋼、鋼管、鋼索及各種型鋼等鋼材加工、連接、安裝組成的工程結鋼結構需要承受各種可能的自然和人為環境的作用,是具有足夠可靠性和良好社會經濟的工程結構物和構筑物。由于鋼材可以回收冶煉而重復利用,所以鋼結構是一種節能環保型、可循環使用的建構,符合經濟持續健康發展的要求。除了在高層建筑、大型廠房、大跨度空間結構、輕鋼結住宅建筑中大量采用鋼結構外,各部門中也大量采用鋼結構,如公路鐵路橋梁、火電主廠義鍋爐鋼架、輸變電鐵塔、廣播電視通信塔、海洋石油平臺、核電站、風力發電、水利建設、地礎鋼板樁等。城市建設需要大量的鋼結構,如地鐵、城市輕便鐵路、立交橋、環保建筑、公施、臨時建筑等。

三、鋼結構發展簡介

從美國、日本、歐洲一些發達國家的經驗看,建筑業即將成為鋼材的主要市場。而目前我國與之相比還有差距。因此我國的高層建筑鋼材到目前為止還都從國外進口,特別是大于50mm的厚鋼板,國產產品的Z向性能尚達不到要求。國外不僅鋼板厚度較大,而且可以滿足各種性能要求。如日本已經能夠生產的100mm的厚鋼板,具有以下類型: ①有高強度低預熱型(以前預熱75℃,現在預熱50℃)的厚鋼板590N/mm2級(HT590級);②抗地震的厚鋼板,主要有低屈服比高強度鋼材(HT590~HT780級)和低屈服點鋼板,這種鋼材日本重點生產,用于次要結構上,當地震時這種材料先屈服,保證主要 結構減少地震損失;③防火厚鋼板。有400N/mm2及490N/mm2,當其在600℃ 時屈服強度還能達到常溫下的2/3;④裝飾用的奧氏體不銹鋼板及鐵素體不銹鋼板(沿海用,優于前者 )。目前,國內高層鋼結構鋼材幾乎都從國外進口,工程總承包由國外承擔,制造和安裝則由國內廉價勞動力承包,這種局面應從速扭轉,因為這與我國產鋼大國的地位很不相稱。大跨度鋼結構鋼材不像高層鋼結構那樣突出,但設計方案經常國外中標,這種局面與中央強調建立我們自己的創新體系的號召相距甚遠,應該引起我國建筑界的關注,是水平低還是其它原因,值得我們深思。

四、鋼結構建筑發展前景

我國的鋼結構產業已進入跨越式發展的新階段。鋼結構建筑規模越來越大、跨度越來越大、造型越來越新穎獨特,有很大的發展潛力。以前我國的鋼結構發展緩慢主要是因為鋼結構造價高(畢竟我們是發展中國家)以及鋼材產量有限。今非昔比,鋼結構施工速度快,施工污染小,重量輕,這些優勢讓它成為未來的發展趨勢。鋼結構建筑發展的同時,還推動了新型鋼結構制造業的發展,鋼結構生產規模從幾百萬噸發展到2000萬噸以上。同屬于金屬制造業,對鋼材進行深加工的產品還有焊接鋼管、金屬絲、繩、鉸線及冷彎型鋼,其產量已經超過6000萬噸以上。由此可見,鋼結構建筑行業是一個正在蒸蒸日上、向著更高階段發展的朝陽行業。

五、結論

隨著機電鋼結構是今后發展的一個方向,隨著科技的進步,審美觀念改變必然使得鋼結構建筑不斷的去擴展自身的表達語匯而尋求發展。我們提倡的是拋棄風格,從結構的理性主義出發,從現代和傳統的建筑結構中吸取精華,創造出技術和藝術有機融合的鋼結構精品建筑。我們要分清楚,鋼結構框架是建筑中承重體系和服務部分,它不是建筑使用中的主要部分,鋼結構建筑的設計首先要遵循建筑設計的一般原則,然后才是發揮鋼結構的優勢。

參考文獻:

[1]陳紹蕃,顧強等.鋼結構基礎.北京:中國建筑工業出版社,2007.

[2]夏志斌.鋼結構設計原理.北京:中國建筑工業出版社. [M] 1994.

[3]陳紹蕃.鋼結構設計原理.北京:科學出版社,2005.

[4]張耀春.鋼結構設計原理.北京:高等教育出版社,2004.07.

第8篇

論文關鍵詞:高層概況發展體系施工

論文摘要:本文簡要介紹了高層、超高層建筑的結構體系,通過對國內已建和在建的高層建筑鋼結構國產化問題的調研,分析了在鋼材、設計、施工和監理等方面國產化所面臨的主要問題,為高層建筑鋼結構的發展提出了一些建議。

高層鋼結構建筑在國外已有110多年的歷史,1883年最早一幢鋼結構高層建筑在美國芝加哥拔地而起,到了二次世界大戰后由于地價的上漲和人口的迅速增長,以及對高層及超高層建筑的結構體系的研究日趨完善、計算技術的發展和施工技術水平的不斷提高,使高層和超高層建筑迅猛發展。鋼筋混凝土結構在超高層建筑中由于自重大,柱子所占的建筑面積比率越來越大,在超高層建筑中采用鋼筋混凝土結構受到質疑;同時高強度鋼材應運而生,在超高層建筑中采用部分鋼結構或全鋼結構的理論研究與設計建造可說是同步前進。

超高層建筑的發展體現了發達國家的建筑科技水平、材料工業水平和綜合技術水平,也是建設部門財力雄厚的象征。來源于/

一、我國的高層與超高層鋼結構建筑的發展

我國的高層與超高層鋼結構建筑自改革開放以來已有20年的歷史,并在設計和施工中積累了不少經驗,已有我國自行編制的《高層民用建筑鋼結構技術規程》。

1、鋼材的國產化

國內鋼鐵企業根據我國高層建筑鋼結構設計標準的要求,制訂我國第一部高層建筑鋼結構的鋼材標準《高層建筑結構用鋼板》(YB4104-2000),比目前仍在實施的《低合金高強度結構鋼》(GB/T1591-94)又前進了一步,其性能指標優于國外同類產品。

2、鋼結構設計國產化

截止2003年3月,我國已建和在建的高層建筑鋼結構有60余幢,按其結構類型劃分,鋼框架-RC核心筒占4314%,SRC框架-RC核心筒占1617%,二者合計6011%;鋼框架-支撐體系占1813%;巨型框架占813%;純鋼框架占617%,筒體和鋼管混凝土結構各占313%。統計表明,目前我國高層建筑鋼結構以混合結構為主。

鑒于我國對混合結構尚未進行系統的研究,所以《建筑抗震設計規范》(GB50011-2001)暫不列入這種結構類型是合理的。

國家標準《高層民用建筑鋼結構技術規程》(JGJ99-98)和《建筑抗震設計規范》(GB50011-2001)等有關高層建筑最大高度和最大高寬比的規定,在一般情況下,應遵守規范的規定,否則應進行專項論證或試驗研究。建設部第111號令《超限高層建筑工程抗震設防管理規定》和建質[2003]46號文《超限高層建筑工程抗震設防專項審查技術要點》,對加強高層建筑鋼結構設計質量控制意義重大,具有可操作性。

鋼結構設計分兩個階段,即設計圖階段和施工詳圖階段。現在有的設計院完全采取國外設計模式,無構件圖、節點圖和鋼材表等,對工程招投標和施工詳圖設計帶來不便。因此,建議有關部門對此做出具體規定。關于節點設計問題,國內應多做一些理論和試驗研究工作,比如柱梁剛性節點塑性鉸外移和防止焊接節點的層狀撕裂等。由于鋼結構的阻尼比較低,在研發各種耗能支撐和節點的減震消能體系方面,國際上研究和應用較多,國內應加快進行此方面的研究。

二、高層及超高層結構體系

對于高層及超高層建筑的劃分,建筑設計規范、建筑抗震設計規范、建筑防火設計規范沒有一個統一規定,一般認為建筑總高度超過24m為高層建筑,建筑總高度超過60m為超高層建筑。

對于結構設計來講,按照建筑使用功能的要求、建筑高度的不同以及擬建場地的抗震設防烈度以經濟、合理、安全、可靠的設計原則,選擇相應的結構體系,一般分為六大類:框架結構體系、剪力墻結構體系、框架—剪力墻結構體系、框—筒結構體系、筒中筒結構體系、束筒結構體系。

三、鋼結構制作與安裝1、鋼柱的安裝

鋼柱是高層、超高層建筑決定層高和建筑總高度的主要豎向構件,在加工制造中必須滿足現行規范的驗收標準。

100m高的超高層鋼柱一般分為8~12節構件,鋼柱在翻樣下料制作過程中應考慮焊縫的收縮變形和豎向荷載作用下引起的壓縮變形,所以鋼柱的翻樣下料長度不等于設計長度,即使只有幾毫米也不能忽略不計。而且上下兩節鋼柱截面完全相等時也不允許互換,要求對每節鋼柱應編號予以區別,正確安裝就位。

矩形或方形鋼柱內的加勁板的焊接應按現行規范要求采用熔嘴電渣焊,不允許采用其他如在箱板上開孔、槽塞焊等形式。

鋼柱標高的控制一般有二種方式:

(1)按相對標高制作安裝。鋼柱的長度誤差不得超過3mm,不考慮焊縫收縮變形和豎向荷載引起的壓縮變形,建筑物的總高度只要達到各節柱子制作允許偏差總和及鋼柱壓縮變形總和就算合格,這種制作安裝一般在12層以下,層高控制不十分嚴格的建筑物。

(2)按設計標高制作安裝。一般在12層以上,精度要求較高的層高,應按土建的標高安裝第一節鋼柱底面標高,每節鋼柱的累加尺寸總和應符合設計要求的總尺寸。每一節柱子的接頭產生的收縮變形和豎向荷載作用下引起的壓縮變形應加到每節鋼柱加工長度中去。

2、框架梁的制作與安裝

高層、超高層框架梁一般采用H型鋼,框架梁與鋼柱宜采用剛性連接,鋼柱為貫通型,在框架梁的上下翼緣處在鋼柱內設置橫向加勁肋。

框架梁應按設計編號正確就位。

為保證框架梁與鋼柱連接處的節點域有較好的延性以及連接可靠性和樓層層高的精確性,在工廠制造時,在框架梁所在位置設置懸臂梁(短牛腿),懸臂梁上下翼緣與鋼柱的連接采用剖口熔透焊縫,腹板采用貼角焊縫。框架梁與鋼柱的懸臂梁(短牛腿)連接,上下翼緣的連接采用襯板(兼引弧板)全熔透焊縫,腹板采用高強螺栓連接。

由于鋼筋混凝土施工允許偏差遠遠大于鋼結構的精度要求,當框架梁與鋼筋混凝土剪力墻或鋼筋混凝土筒壁連接時,腹板的連接板可開橢圓孔,橢圓孔的長向尺寸不得大于2d0(d0為螺栓孔徑),并應保證孔邊距的要求。

框架梁的翻樣下料長度同樣不等于設計長度,需考慮焊接收縮變形。焊接收縮變形可用經驗公式計算再按實際加工之后校核,確定其翻樣下料的精確長度。

框架梁上下翼緣的連接可采用高強螺栓連接或焊接連接,目前大部分采用帶襯板的全熔透焊接連接。施工時先焊下翼緣再焊上翼緣,先一端點焊定位,再焊另一端。

主站蜘蛛池模板: 欧美系列在线 | 激情五月婷婷丁香 | 国产欧美日韩中文字幕 | 伊人久久亚洲综合天堂 | 69性欧美| 精品国产免费一区二区三区五区 | 热久久网站 | 69国产成人综合久久精 | 久久综合九色综合97_ 久久久 | 99re在线这里只有精品 | 五月婷婷丁香在线观看 | 国产成人精品久久综合 | 狠狠色婷婷七月色综合 | 国产va精品免费观看 | 欧美69式囗交视频 | 婷婷五月小说 | 日韩亚色 | 国产高清视频免费 | 色综合精品 | 免费小视频网站 | 精品久久九九 | www.色戒| 久久免费手机视频 | 五月婷婷综合基地 | 国产福利一区二区三区 | 狠狠a | 97视频在线观看播放 | 日本天堂网址 | 国产精品久久久久久一区二区三区 | 久久精品99视频 | 免费看一级性生活片 | 久久天堂 | www.自拍| 久久天堂| 人人色在线视频播放 | 奇米第四手机在线观看 | 国产麻豆久久 | 欧美精品一二三区 | 国产亚洲网站 | 99视频久久 | 99精彩视频在线观看 |