發布時間:2022-09-07 09:15:34
序言:寫作是分享個人見解和探索未知領域的橋梁,我們為您精選了8篇的微波通信技術論文樣本,期待這些樣本能夠為您提供豐富的參考和啟發,請盡情閱讀。
論文摘要:隨著計算機技術的廣泛普及與計算機遠程信息處理應用的發展,數據通信應運而生,它實現了計算機與計算機之間,計算機與終端之間的傳遞。由于不同業務需求的變化及通信技術的發展使得數據通信經過了不同的發展歷程。
數據通信是以“數據”為業務的通信系統,數據是預先約定好的具有某種含義的數字、字母或符號以及它們的組合。數據通信是20世紀50年代隨著計算機技術和通信技術的迅速發展,以及兩者之間的相互滲透與結合而興起的一種新的通信方式,它是計算機和通信相結合的產物。隨著計算機技術的廣泛普及與計算機遠程信息處理應用的發展,數據通信應運而生,它實現了計算機與計算機之間,計算機與終端之間的傳遞。由于不同業務需求的變化及通信技術的發展使得數據通信經過了不同的發展歷程。
1通信系統傳輸手段
電纜通信:雙絞線、同軸電纜等。市話和長途通信。調制方式:SSB/FDM。基于同軸的PCM時分多路數字基帶傳輸技術。光纖將逐漸取代同軸。
微波中繼通信:比較同軸,易架設、投資小、周期短。模擬電話微波通信主要采用SSB/FM/FDM調制,通信容量6000路/頻道。數字微波采用BPSK、QPSK及QAM調制技術。采用64QAM、256QAM等多電平調制技術提高微波通信容量,可在40M頻道內傳送1920~7680路PCM數字電話。
光纖通信:光纖通信是利用激光在光纖中長距離傳輸的特性進行的,具有通信容量大、通信距離長及抗干擾性強的特點。目前用于本地、長途、干線傳輸,并逐漸發展用戶光纖通信網。目前基于長波激光器和單模光纖,每路光纖通話路數超過萬門,光纖本身的通信纖力非常巨大。幾十年來,光纖通信技術發展迅速,并有各種設備應用,接入設備、光電轉換設備、傳輸設備、交換設備、網絡設備等。光纖通信設備有光電轉換單元和數字信號處理單元兩部分組成。
衛星通信:通信距離遠、傳輸容量大、覆蓋面積大、不受地域限制及高可靠性。目前,成熟技術使用模擬調制、頻分多路及頻分多址。數字衛星通信采用數字調制、時分多路及時分多址。
移動通信:GSM、CDMA。數字移動通信關鍵技術:調制技術、糾錯編碼和數字話音編碼。
2數據通信的構成原理
數據終端(DTE)有分組型終端(PT)和非分組型終端(NPT)兩大類。分組型終端有計算機、數字傳真機、智能用戶電報終端(TeLetex)、用戶分組裝拆設備(PAD)、用戶分組交換機、專用電話交換機(PABX)、可視圖文接入設備(VAP)、局域網(LAN)等各種專用終端設備;非分組型終端有個人計算機終端、可視圖文終端、用戶電報終端等各種專用終端。數據電路由傳輸信道和數據電路終端設備(DCE)組成,如果傳輸信道為模擬信道,DCE通常就是調制解調器(MODEM),它的作用是進行模擬信號和數字信號的轉換;如果傳輸信道為數字信道,DCE的作用是實現信號碼型與電平的轉換,以及線路接續控制等。傳輸信道除有模擬和數字的區分外,還有有線信道與無線信道、專用線路與交換網線路之分。交換網線路要通過呼叫過程建立連接,通信結束后再拆除;專線連接由于是固定連接就無需上述的呼叫建立與拆線過程。計算機系統中的通信控制器用于管理與數據終端相連接的所有通信線路。中央處理器用來處理由數據終端設備輸入的數據。
3數據通信的分類
3.1有線數據通信
數字數據網(DDN)。數字數據網由用戶環路、DDN節點、數字信道和網絡控制管理中心組成。DDN是利用光纖或數字微波、衛星等數字信道和數字交叉復用設備組成的數字數據傳輸網。也可以說DDN是把數據通信技術、數字通信技術、光遷通信技術以及數字交叉連接技術結合在一起的數字通信網絡。數字信道應包括用戶到網絡的連接線路,即用戶環路的傳輸也應該是數字的,但實際上也有普通電纜和雙絞線,但傳輸質量不如前。
分組交換網。分組交換網(PSPDN)是以CCITTX.25建議為基礎的,所以又稱為X.25網。它是采用存儲——轉發方式,將用戶送來的報文分成具用一定長度的數據段,并在每個數據段上加上控制信息,構成一個帶有地址的分組組合群體,在網上傳輸。分組交換網最突出的優點是在一條電路上同時可開放多條虛通路,為多個用戶同時使用,網絡具有動態路由選擇功能和先進的誤碼檢錯功能,但網絡性能較差。
幀中繼網。幀中繼網絡通常由幀中繼存取設備、幀中繼交換設備和公共幀中繼服務網3部分組成。幀中繼網是從分組交換技術發展起來的。幀中繼技術是把不同長度的用戶數據組均包封在較大的幀中繼幀內,加上尋址和控制信息后在網上傳輸。
3.2無線數據通信
無線數據通信也稱移動數據通信,它是在有線數據通信的基礎上發展起來的。有線數據通信依賴于有線傳輸,因此只適合于固定終端與計算機或計算機之間的通信。而移動數據通信是通過無線電波的傳播來傳送數據的,因而有可能實現移動狀態下的移動通信。狹義地說,移動數據通信就是計算機間或計算機與人之間的無線通信。它通過與有線數據網互聯,把有線數據網路的應用擴展到移動和便攜用戶。4網絡及其協議
4.1計算機網絡
計算機網絡(ComputerNetwork),就是通過光纜、雙絞電話線或有、無線信道將兩臺以上計算機互聯的集合。通過網絡各用戶可實現網絡資源共享,如文檔、程序、打印機和調制解調器等。計算機網絡按地理位置劃分,可分為網際網、廣域網、城域網、和局域網四種。Internet是世界上最大的網際網;廣域網一般指連接一個國家內各個地區的網絡。廣域網一般分布距離在100-1000公里之間;城域網又稱為都市網,它的覆蓋范圍一般為一個城市,方圓不超過10-100公里;局域網的地理分布則相對較小,如一棟建筑物,或一個單位、一所學校,甚至一個大房間等。
局域網是目前使用最多的計算機網絡,一個單位可使用多個局域網,如財務部門使用局域網來管理財務帳目,勞動人事部門使用局域網來管理人事檔案、各種人才信息等等。
4.2網絡協議
網絡協議是兩臺計算機之間進行網絡對話所使用的語言,網絡協議很多,有面向字符的協議、面向比特的協議,還有面向字節計數的協議,但最常用的是TCP/IP協議。它適用于由許多LAN組成的大型網絡和不需要路由選擇的小型網絡。TCP/IP協議的特點是具有開放體系結構,并且非常容易管理。
TCP/IP實際上是一種標準網絡協議,是有關協議的集合,它包括傳輸控制協議(TransportControlProtocol)和因特網協議(InternetProtocol)。TCP協議用于在應用程序之間傳送數據,IP協議用于在程序與主機之間傳送數據。由于TCP/IP具有跨平臺性,現已成為Internet的標準連接協議。網絡協議分為如下四層:網絡接口層:負責接收和發送物理幀;網絡層:負責相鄰節點之間的通信;傳輸層:負責起點到終端的通信;應用層:提供諸如文件傳輸、電子郵件等應用程序要把數據以TCP/IP協議方式從一臺計算機傳送到另一臺計算機,數據需經過上述四層通信軟件的處理才能在物理網絡中傳輸。
目前的IP協議是由32位二進制數組成的,如202.0.96.133就表示連接到因特網上的計算機使用的IP地址,在整個因特網上IP地址是唯一的。
論文關鍵詞:擴頻通信原理特點發展應用
論文摘要:擴頻通信是現代通信系統中新的通信方式,它具有較強的抗干擾、抗衰落和抗多徑性能,頻譜利用率高。本文介紹了擴頻通信的工作原理、特點、及其發展應用。
一、擴頻通信的工作原理
在發端輸人的信息先調制形成數字信號,然后由擴頻碼發生器產生的擴頻碼序列去調制數字信號以展寬信號的頻譜,展寬后的信號再調制到射頻發送出去。在接收端收到的寬帶射頻信號,變頻至中頻,然后由本地產生的與發端相同的擴頻碼序列去相關解擴,再經信息解調,恢復成原始信息輸出。可見,一般的擴頻通信系統都要進行3次調制和相應的解調。一次調制為信息調制,二次調制為擴頻調制,三次調制為射頻調制,以及相應的信息解調、解擴和射頻解調。與一般通信系統比較,多了擴頻調制和解擴部分。擴頻通信應具備如下特征:(1)數字傳輸方式;(2)傳輸信號的帶寬遠大于被傳信息帶寬;(3)帶寬的展寬,是利用與被傳信息無關的函數(擴頻函數)對被傳信息的信元重新進行調制實現的;(4)接收端用相同的擴頻函數進行相關解調(解擴),求解出被傳信息的數據。用擴頻函數(也稱偽隨機碼)調制和對信號相關處理是擴頻通信有別于其他通信的兩大特點。
二、擴頻通信技術的特點
擴頻信號是不可預測的、偽隨機的寬帶信號,其帶寬遠大于要傳輸的數據(信息)帶寬,同時接收機中必須有與寬帶載波同步的副本。擴頻系統具有以下特點。
1.抗干擾性強
擴頻信號的不可預測性,使擴頻系統具有很強的抗干擾能力。干擾者很難通過觀察進行干擾,干擾起不了太大作用。擴頻通信系統在傳輸過程中擴展了信號帶寬,所以即使信噪比很低,甚至在有用信號功率低于干擾信號功率的情況下,仍能不受干擾、高質量地進行通信,擴展的頻譜越寬,其抗干擾性越強。
2.低截獲性
擴頻信號的功率均勻分布在很寬的頻帶上,傳輸信號的功率密度很低,偵察接收機很難監測到,因此擴頻通信系統截獲概率很低。
3.抗多路徑干擾性能好
多路徑干擾是電波傳播過程中因遇到各種非期望反射體(如電離層、高山、建筑物等)引起的反射或散射,在接收端的這些反射或散射信號與直達路徑信號相互干涉而造成的干擾。多路徑干擾會嚴重影響通信。擴頻通信系統中增加了擴頻調制和解擴過程,利用擴頻碼序列間的相關特性,在接收端解擴時,從多徑信號中分離出最強的有用信號,或將多徑信號中的相同碼序列信號疊加,這樣就可有效消除無線通信中因多徑干擾造成的信號衰落現象,使擴頻通信系統具有良好的抗多徑衰落特性。
4.保密性好
在一定的發射功率下,擴頻信號分布在很寬的頻帶內,無線信道中有用信號功率譜密度極低,這樣信號可以在強噪聲背景下,甚至在有用信號被噪聲淹沒的情況下進行可靠通信,使外界很難截獲傳送的信息,要想進一步檢測出信號的特征參數就更難了.所以擴頻系統可實現隱蔽通信。同時,對不同用戶使用不同碼,旁人無法竊聽通信,因而擴頻系統具有高保密性。
5.易于實現碼分多址
在通信系統中,可充分利用在擴頻調制中使用的擴頻碼序列之間良好的自相關特性和互相關特性,接收端利用相關檢測技術進行解擴,在分配給不同用戶不同碼型的情況下,系統可以區分不同用戶的信號,這樣同一頻帶上許多用戶可以同時通話而互不干擾。
三、擴頻技術的發展與應用
在過去由于技術的限制,人們一直在走增加信號功率,減少噪聲,提高信噪比的道路。即使到了70年代,偽碼技術已經出現,但作為相關器的“碼環”的鐘頻只能做到幾千赫茲也無助于事.近幾年,由于大規模集成電路的發展,幾十兆赫茲,甚至幾百兆赫茲的偽碼發生器及其相關部件都已成為現實,擴頻通信獲得極其迅速的發展.通信的發展史又到了一個轉折點,由用信噪比換帶寬的年代進入了用寬帶換信噪比的年代.從最佳通信系統的角度看擴頻通信.最佳通信系統一最佳發射機+最佳接收機.幾十年來,最佳接收理論已經很成熟,但最佳發射問題一直沒有很好解決,偽碼擴頻是一種最佳的信號形式和調制制度,構成了最佳發射機.因此,有了最佳通信系統一偽碼擴頻+相關接收這種認識,人們就不難預測擴頻通信的未來前景.從9O年代無線通信開始步人擴頻通信和自適應通信的年代.擴頻通信的熱浪已經波及短波、超微波、微波通信和衛星通信,碼分多址(CDMA)已開始廣泛用于未來的峰窩通信、無繩通信和個人通信以及各種無線本地環路,發揮越來越大的作用.接入網是由傳統的用戶線、用戶環路和用戶接入系統,逐步發展、演變和升級而形成的.現代電信網絡分為3部分:傳輸網、交換網和接入網.由于接入網發展較晚,往往成為電信發展的“瓶頸”,各國都很重視接入網的發展,因此各類接人技術和系統應運而生.由于ISM(IndustryScientificMedica1)頻段的開放性,經營者和用戶不需申請授權就可以自由地使用這些頻段,而無線擴頻技術所使用的頻段(2.400~2.483)正是全世界通用的ISM頻段,包括IEEE802.11協議架構的無線局域網也大部分選用此頻段.在無線接人系統中,擴頻微波與常規微波相比有著3個顯著的優點:抗干擾性強、頻點問題容易處理、價格比較便宜.而且,擴頻微波接入技術相對有線接入技術來說,有成本低、使用靈活、建設快捷的優勢,在接入網中起著不可替代的作用.
擴頻微波主要應用在以下幾個方面.語音接入(點對點);數據接入;視頻接入;多媒體接入;因特網(Internet)接入。
四、結語
擴頻通信是通信的一個重要分支和發展方向,是擴頻技術與通信相結合的產物。本文主要論述了擴頻通信的特點、理論可行性及典型的工作方式。擴頻通信的強抗干擾性、低截獲性、良好的抗多路徑干擾性和安全性等特點,使它的應用迅速從軍用擴展到民用通信中,它的易于實現碼分多址的特點,使它能與第三代移動通信系統完美結合,發展前景極為廣闊。
參考文獻:
[1]曾興雯等.擴展頻譜通信及其多址技術[M].西安:西安電子科技大學出版社,2004.
[2]查光明,熊賢祚.擴頻通信[M].西安:西安電子科技大學出版社,2004.
論文摘要:擴頻通信是現代通信系統中新的通信方式,它具有較強的抗干擾、抗衰落和抗多徑性能,頻譜利用率高。本文介紹了擴頻通信的工作原理、特點、及其發展應用。
一、擴頻通信的工作原理
在發端輸人的信息先調制形成數字信號,然后由擴頻碼發生器產生的擴頻碼序列去調制數字信號以展寬信號的頻譜,展寬后的信號再調制到射頻發送出去。在接收端收到的寬帶射頻信號,變頻至中頻,然后由本地產生的與發端相同的擴頻碼序列去相關解擴,再經信息解調,恢復成原始信息輸出。可見,一般的擴頻通信系統都要進行3次調制和相應的解調。一次調制為信息調制,二次調制為擴頻調制,三次調制為射頻調制,以及相應的信息解調、解擴和射頻解調。與一般通信系統比較,多了擴頻調制和解擴部分。擴頻通信應具備如下特征:(1)數字傳輸方式;(2)傳輸信號的帶寬遠大于被傳信息帶寬;(3)帶寬的展寬,是利用與被傳信息無關的函數(擴頻函數)對被傳信息的信元重新進行調制實現的;(4)接收端用相同的擴頻函數進行相關解調(解擴),求解出被傳信息的數據。用擴頻函數(也稱偽隨機碼)調制和對信號相關處理是擴頻通信有別于其他通信的兩大特點。
二、擴頻通信技術的特點
擴頻信號是不可預測的、偽隨機的寬帶信號,其帶寬遠大于要傳輸的數據(信息)帶寬,同時接收機中必須有與寬帶載波同步的副本。擴頻系統具有以下特點。
1.抗干擾性強
擴頻信號的不可預測性,使擴頻系統具有很強的抗干擾能力。干擾者很難通過觀察進行干擾,干擾起不了太大作用。擴頻通信系統在傳輸過程中擴展了信號帶寬,所以即使信噪比很低,甚至在有用信號功率低于干擾信號功率的情況下,仍能不受干擾、高質量地進行通信,擴展的頻譜越寬,其抗干擾性越強。
2.低截獲性
擴頻信號的功率均勻分布在很寬的頻帶上,傳輸信號的功率密度很低,偵察接收機很難監測到,因此擴頻通信系統截獲概率很低。
3.抗多路徑干擾性能好
多路徑干擾是電波傳播過程中因遇到各種非期望反射體(如電離層、高山、建筑物等)引起的反射或散射,在接收端的這些反射或散射信號與直達路徑信號相互干涉而造成的干擾。多路徑干擾會嚴重影響通信。擴頻通信系統中增加了擴頻調制和解擴過程,利用擴頻碼序列間的相關特性,在接收端解擴時,從多徑信號中分離出最強的有用信號,或將多徑信號中的相同碼序列信號疊加,這樣就可有效消除無線通信中因多徑干擾造成的信號衰落現象,使擴頻通信系統具有良好的抗多徑衰落特性。
4.保密性好
在一定的發射功率下,擴頻信號分布在很寬的頻帶內,無線信道中有用信號功率譜密度極低,這樣信號可以在強噪聲背景下,甚至在有用信號被噪聲淹沒的情況下進行可靠通信,使外界很難截獲傳送的信息,要想進一步檢測出信號的特征參數就更難了.所以擴頻系統可實現隱蔽通信。同時,對不同用戶使用不同碼,旁人無法竊聽通信,因而擴頻系統具有高保密性。
5.易于實現碼分多址
在通信系統中,可充分利用在擴頻調制中使用的擴頻碼序列之間良好的自相關特性和互相關特性,接收端利用相關檢測技術進行解擴,在分配給不同用戶不同碼型的情況下,系統可以區分不同用戶的信號,這樣同一頻帶上許多用戶可以同時通話而互不干擾。
三、擴頻技術的發展與應用
在過去由于技術的限制,人們一直在走增加信號功率,減少噪聲,提高信噪比的道路。即使到了70年代,偽碼技術已經出現,但作為相關器的“碼環”的鐘頻只能做到幾千赫茲也無助于事.近幾年,由于大規模集成電路的發展,幾十兆赫茲,甚至幾百兆赫茲的偽碼發生器及其相關部件都已成為現實,擴頻通信獲得極其迅速的發展.通信的發展史又到了一個轉折點,由用信噪比換帶寬的年代進入了用寬帶換信噪比的年代.從最佳通信系統的角度看擴頻通信.最佳通信系統一最佳發射機+最佳接收機.幾十年來,最佳接收理論已經很成熟,但最佳發射問題一直沒有很好解決,偽碼擴頻是一種最佳的信號形式和調制制度,構成了最佳發射機.因此,有了最佳通信系統一偽碼擴頻+相關接收這種認識,人們就不難預測擴頻通信的未來前景.從9O年代無線通信開始步人擴頻通信和自適應通信的年代.擴頻通信的熱浪已經波及短波、超微波、微波通信和衛星通信,碼分多址(CDMA)已開始廣泛用于未來的峰窩通信、無繩通信和個人通信以及各種無線本地環路,發揮越來越大的作用.接入網是由傳統的用戶線、用戶環路和用戶接入系統,逐步發展、演變和升級而形成的.現代電信網絡分為3部分:傳輸網、交換網和接入網.由于接入網發展較晚,往往成為電信發展的“瓶頸”,各國都很重視接入網的發展,因此各類接人技術和系統應運而生.由于ISM(IndustryScientificMedica1)頻段的開放性,經營者和用戶不需申請授權就可以自由地使用這些頻段,而無線擴頻技術所使用的頻段(2.400~2.483)正是全世界通用的ISM頻段,包括IEEE802.11協議架構的無線局域網也大部分選用此頻段.在無線接人系統中,擴頻微波與常規微波相比有著3個顯著的優點:抗干擾性強、頻點問題容易處理、價格比較便宜.而且,擴頻微波接入技術相對有線接入技術來說,有成本低、使用靈活、建設快捷的優勢,在接入網中起著不可替代的作用.
擴頻微波主要應用在以下幾個方面.語音接入(點對點);數據接入;視頻接入;多媒體接入;因特網(Internet)接入。
四、結語
擴頻通信是通信的一個重要分支和發展方向,是擴頻技術與通信相結合的產物。本文主要論述了擴頻通信的特點、理論可行性及典型的工作方式。擴頻通信的強抗干擾性、低截獲性、良好的抗多路徑干擾性和安全性等特點,使它的應用迅速從軍用擴展到民用通信中,它的易于實現碼分多址的特點,使它能與第三代移動通信系統完美結合,發展前景極為廣闊。
參考文獻:
[1]曾興雯等.擴展頻譜通信及其多址技術[M].西安:西安電子科技大學出版社,2004.
論文摘要:隨著電力通信新技術的發展,電力通信網作為保持電力系統安全穩定運行的支柱之一,在我國發揮著不可忽視的作用。為了保證我國電力系統的安全與穩定,需要對電力通信行業的發展歷程和現狀有一個準確客觀的認識,并提出發展方向和建議。本文從我國電力通信的發展歷程、面臨的現狀和未來發展方向三個方面,對其做出了闡釋。
在通信技術和電力技術飛速發展的今天,我國的電力通信行業,隨著電力工業的發展,正不斷擴展和完善。我國的電力通信網,是為保證我國電力系統的安全穩定優質運行而產生的,經歷了從無到有,從簡單到當今先進技術的運用,從單一到多種通信手段共用覆蓋的發展過程。電力通信在為電網的自動化控制、商業化運營和自動化管理的過程中發揮著巨大的聯通和服務作用。
1 我國電力通信系統的發展歷程
我國的電力通信系統,經歷了一個較快的發展時期,幾十年內,經歷了一個從縱橫交換到程控交換、從明線和同軸電纜到光纖傳輸、從模擬網到數字通信網、從定點通信到移動通信以及從主要面向硬件到主要面向軟件技術的發展階段變化。
1.1 四十年代至五六十年代
電力通信的發展始終與電網的發展相同步,互相支持、互相配合。在我國,四十年代,主要以東北輸電線為主,除城市外,其他地區都較為孤立,且明線電話在當時占主要地位,長距離調度所使用的載波機主要依靠日本機器。隨著五六十年代我國用電量的明顯劇增,東北電網又向華北地區擴散,建成了華北電網,但我國的公網通信仍然較為落后。此階段我國使用的電力線載波機仍是國外進口,在向蘇聯進口的同時我國開始自行研發生產。
1.2 七十年代
七十年代初期開始,我國的電力通信系統開始在一些信息需求量大和重要部門采用微波通信;到末期,我國的電力通信系統又有了進一步發展,電力線載波通信占主導地位,其它有小容量(120路以下)FDM模擬微波、郵電多路載波、電纜及架空明線等,我國的電網已經擴大到擁有華北、東北和華東三大電網,部分地區開始形成自己的獨立通信網絡。此階段我國電力通信以音頻、載波、模擬微波等通信方式為主。不過全國范圍內,大多地區十萬千瓦以上的電網沒有通信干線,且通信電路不太健全、自動化水平不高,部分地區還經常出現停電現象,通信系統的落后成為我國電力工作的薄弱環節之一,給我國的工農業生產帶來了較大影響,與國外差距仍然較大。
1.3 八十年代
八十年代是我國電力通信的高速發展時期,隨著大規模集成電路的發展,出現了數字微波、光纖通信和程控交換機等,大電站、大機組、超高壓輸電線路不斷增加,電網規模越來越大。承接七十年代末的電力系統數字化網絡的建設,八十年代,我國開始建設電力專用通信網。此階段,數字微波、衛星通信、光纖通信、移動通信、對流層散射通信、特高頻通信、數字程控交換機等得到了推廣與運用。當然,電網的飛速發展也為電網的管理和技術提出了新的要求,我國緊跟時代腳步,自上而下成立了電力通信網建設和管理的專門機構,并逐步形成和完善了一套指導建設電力通信網的技術政策,制訂了有關通信的規章制度和技術要求,培養出了一批熟悉通信設計、建設、運行、維護、管理的人才,在政策和制度方面加強了力量建設。
1.4 九十年代
九十年代,我國的電力通信系統發展較快,有了進一步提高,新技術和新設備的應用更快更靈活,在其他網絡上,例如傳輸網和交換網等得到了進一步的完善,并開始引入一批高新網絡技術,為現在的電力通信發展打下了良好基礎。
2 我國電力通信的現狀
2.1 電力通信網的主要業務形式
在我國,電力通信網是一種專業性極強的通信網,是電網的重要組成部分,在網絡通信技術不斷發展的今天,電力通信網的業務形式也在不斷擴大和發展,其主要業務形式表現在以下幾個方面:
2.1.1 電網安全監視和穩定控制方面
在我國各個城市中經常出現電力系統崩潰的現象,其中一個重要原因就是電力網絡結構過于薄弱,而且使用極不合理。對此,許多地區在電網的安全監視和穩定性控制方面給予了不少投入。例如,購置了及時定位線路故障點的線路故障測距裝置;對通信網絡不穩定的地方設置了實時監控系統,監視通信網路的健康狀況;通過全球衛星定位系統的實時相量測量,在電力系統中實施相量控制等手段,使得我國大部分地區的電力系統穩定運行成為了可能。
2.1.2 氣象與新能源方面
電力通信系統目前在氣象監測方面正發揮著日益增大的作用,例如:對于常年無人監守的戶外水電站,可借助電力通信系統在水電站的上游選取合適位置安放監測臺,對一年降水情況進行采集和網絡分析,然后通過網絡將信息傳播,對數據進行全面具體的分析。同時,它在新能源方面的作用也正不斷突出,對太陽能、風能、潮汐等新能源的發電技術研究正是今后國家電力進程的一個長期方向,因此電力通信系統對新能源的開發利用也是今后電力通信網絡的業務方向之一。
2.1.3 環境保護方面
在環境保護力度不斷加大的今天,對各個領域的各種排放物的監控要求正不斷提高,目前,我國電力通信系統在對部分火電廠、核電站的廢氣、煙塵、放射線等的排放上已形成全面的監測系統。此系統綜合利用GPS系統、地理信息系統(GIS)、遙感技術(RS)等先進技術,將采集到的數據和實物樣本就地進行分析處理,并通過網絡,傳輸到總部統一備案處理,大大提高了效率,對環境保護做出了巨大貢獻。
2.1.4 電網商業化運營方面
電網商業化運營主要依托于全國的聯網工程,在我國電力改革深入發展的今天,要求形成與國際互聯網企業接軌的大的網絡環境。電子商務系統安全性大、快捷方便,收益空間大,建立互動式電子商務平臺,不僅能擴展業務范圍,還能擴大信息交流。高速而又安全的電力通信網絡,對電子商務的實時交易和電力網絡環境的安全維護,發揮著越來越重要的作用。
2.2 我國電力通信的主要問題
2.2.1 電力通信網絡管理標準不完善
我國的電力通信網絡,其標準和體制雖然符合國家和國際標準,但在電力系統的特點和要求下,其通信網發展的標準和規范都極不完善,規劃等制定和更新也不及時。這在新技術更新發展速度如此迅速的今天,電力通信網絡的管理標準不完善對電力通信網的整體全面發展影響較大。
2.2.2 區域發展不平衡
在我國,各地受經濟發展水平、政策貫徹落實程度和科技運用程度的差異,每個地區的電力通信發展水平極不平衡。部分地區和單位早已實現數字化和光纖化環網,該地區的電網及通信業務服務能力大大加強;而有些地區受地理和經濟因素的共同制約,在發展速度上落后于發達地區,有的甚至偏遠到變電站連成最基本的調度電話都難以保證,各地區發展極不平衡。
3 電力通信的發展方向
3.1 加快光纖傳輸網的設置,加大全面網絡建設
我國部分地區的電力通信系統中,電力光纖通信網存在著纖芯容量不足、設備容量小的情況。因此很有必要加大投入在加快傳輸網的建設上。要對該地區主干光纖傳輸網加大改造和建設力度,吸引投資,以點帶面,在工程建設上做好工作。而且,要在電力通信和動作流程中加大網絡的全面、系統建設。例如,在通信網的非話業務方面和網內IP技術等方面要加大開拓和推廣力度,努力擴大電力通信網絡的覆蓋面,在各交換機制的組網工作中做好相關完善工作,把信息交換網絡朝著高速高效率、安全性強、穩定性高的方向建設。
3.2 加大科研力度和技術研究
我國的電力傳輸技術有待提高,要在維護已有的傳統傳輸模式的基礎上,加強改造和新技術的研發,增加業務管理力度和方面,在研究和建設電力通信網絡的同時,要鼓勵科技創新,將寬帶IP等新技術的運用深入到現代通信網絡的建設當中,多角度加大經費投入和科研技術的研究。
3.3 各地嚴抓電力通信電路的建設質量
在我國電力通信發展速度飛快的現狀下,要努力減少通信電路誤碼率高、公務監控不力、監控系統不通等系列問題,杜絕電力通信網絡工程中的低質量工程項目的出現。各個地區應避免“地方保護”、“門戶觀念”對工程選擇和決定的不良影響。且在網絡系統的建設過程中,加大科研力度和投入,其工程項目負責人還要實行責任制,做好檢測和監管工作,及時驗證工程指標是否合格,確保建設質量。
3.4 積極建設寬帶多業務數字網絡平臺
在電力通信發展規劃中,要積極地建設寬帶多業務數字網絡平臺,在語音、圖像、數據、媒體、新聞等各業務領域為現在和今后的發展打好基礎,提供統一的多優先等級,確保業務質量。
3.5 致力于國內和國際市場的開發
保證業務質量的服務,在優化核心層基礎上,廣泛開展接入層、用戶層工作。在電力通信網絡成為功能強大的通信網絡時,要按照市場機制和市場運行規律,充分合理地利用我們的通信網絡資源,積極拓寬新的增值業務和服務范圍,規劃、建設、完善好一批具有一定規模和發展潛力的電力通信系統模式,加大自身競爭力,逐步走向社會,參與競爭。
電力通信的戰略地位非同一般,做好電力通信行業的發展,必須依托于堅固的電網結構、先進的通訊網絡,并有完善的金融和法制體系作支撐。我國的電力通信技術目前正處于穩步上升發展時期,其具有光明的發展前途和強大的生命力。政府各部門也應該加大關注力度和資金投入力度,同時電力通信行業還要積極提高自身業務水平和素質,在技術和裝備上不斷改進,將科技含量更高、技術更全面的成果廣泛實施,為我國的電力通信行業和全國人民帶來便利和服務。
參考文獻:
[1]孫業成,趙大平,陳希.《電力系統信息產業的發展方向》.中國電力科學研究院通信研究所,2001年10月10日.
[2]《國內電力通信的發展狀況》中華商務網,2002年6月10日.
關鍵詞:神經網絡; BP網絡; 天線; EDA
中圖分類號:TP18文獻標識碼:A
文章編號:1004-373X(2010)15-0071-03
Application of Neural Network in Antenna Design
ZHANG Shan-shan
(Xi’an Institute of Electronic Engineering, Xi’an 710100, China)
Abstract: The application of neural network in antenna design is put forward because the processing speed of many antenna design softwares is not fast enough. A neural network-based optimization is to train the neural network with the input and output of a system, and by its associative memory self-learning function to make the output of the network is similar to the output of the original system in the case of the same input. In this way, the network can be used to simulate the output of the original system to achieve the fast calculation since the processing speed of neural networks is generally fast enough.
Keywords: neural network; BP network; antenna; EDA
0 引 言
隨著通信技術和計算機技術的日趨成熟和完善,微波通信、移動通信、衛星通信等無線通信都在高速的發展,人們預計無線通信將在通信行業占領愈來愈重要的地位。天線是無線通信領域中非常重要的元器件,對天線的研究是無線通信研究中的一個重要的課題。目前,有很多電磁仿真軟件可以用來輔助天線設計,應用較為廣泛的Agilent公司的ADS和Ansoft公司HFSS,分別基于矩量法(Method of Moments,MoM)與有限元法(Finite Element Method,FEM),均具有較精確的天線設計方案,但是處理速度一般都不是很理想。隨著天線設計的復雜程度提高,而設計周期卻在減小,提高微波EDA的處理速度成為迫切需要解決的問題。如果在不大幅度降低精確性的同時對處理速度進行改進,就要找到一種處理方法,它必須滿足兩點:第一,可以充分逼近任意復雜的非線性關系;第二,使得快速進行大量運算成為可能[1]。
而神經網絡就滿足這兩個條件,基于神經網絡的優化計算就是利用神經網絡的聯想存儲及自學習功能,以某一系統的輸入作為網絡的輸入,以這一系統的輸出作為網絡的目標,反復訓練網絡,最終使網絡具有與原系統相似的輸出。這樣,在相同的輸入下,就可以用網絡的輸出來模擬原系統的輸出。這里以天線設計中某些要變化的參數作為網絡的輸入,以天線的某些性能指標為網絡的訓練目標,用少量的原始數據(由微波EDA得出)訓練網絡,直到誤差符合要求,并且用一定量的數據來測試網絡,以確保網絡的輸出接近真實值。訓練完畢后,就可以用所訓練的網絡來代替原EDA進行計算,而神經網絡的處理速度要快得多,從而達到了加速的目的。
1 神經網絡簡介
人工神經網絡(Artificial Neural Network,ANN)早期的研究工作應追溯至20世紀40年代,W.Mcculloch和W.Pitts首先提出神經元的數學模型。1982年和1984年美國物理學家Hopfield在美國科學院院刊上發表了兩篇關于人工神經網絡研究的論文,引起了巨大的反響。隨即,一大批學者和研究人員圍繞著 Hopfield提出的方法展開了進一步的工作,形成了上世紀80年代中期以來人工神經網絡的研究熱潮[2]。
表征神經網絡需要3個方面:網絡拓撲結構、神經元特性、以及學習(或訓練)方法。人工神經網絡是由簡單的處理單元所組成的大量并行分布的處理機,這種處理機具有存儲和應用經驗知識的自然特性,它與人腦的相似之處概括為兩方面:一是通過學習過程利用神經網絡從外部環境中獲取知識;二是內部神經元用來存儲獲取的知識信息[3]。
2 天線饋電匹配設計
微帶貼片天線以其體積小、重量輕、易與載體共形、電氣性能多樣化等特點,在無線通信領域得到越來越廣泛的應用,因此,本文以貼片天線的貼片尺寸對S11參數影響為例說明神經網絡在天線饋電匹配設計中的應用。
利用Ansoft公司HFSS建立天線模型,如圖1所示。基底:中心坐標(-30,-30,0) mm,x軸90 mm,y軸80 mm,z軸1.6 mm,介電常數4.4。貼片:中心坐標(0,0,1.6) mm,x軸37.5 mm,y軸25 mm。饋電探針:中心坐標(2.76,10,0) mm,方向z軸,直徑0.63 mm,高16 mm。接地探針:中心坐標(1,10,0) mm,方向z軸,直徑0.32 mm,高1.6 mm。以貼片長寬為變量,設為fx,fy,在本例中fx范圍[3.5,4.0] cm,步長01 cm;fy范圍[2.2,2.7] cm,步長01 cm;頻率范圍[22,24] GHz, 步長0002 GHz。以fx,fy,f為變量進行掃描,共掃描點數:3 636個。
圖1 貼片天線HFSS模型
目前,神經網絡結構的選擇尚無一種統一而完整的理論指導,一般只能由經驗選定。而網絡的結構直接影響網絡的逼近能力及推廣性質。因此,應用中如何選擇合適的網絡結構是一個重要的問題。本文中采取三層的BP網絡,BP網絡實質上是實現了一個從輸入到輸出的映射功能,而數學理論已證明它具有實現任何復雜非線性映射的功能。這使得它特別適合于求解內部機制復雜的問題,而且網絡能通過學習帶正確答案的實例集自動提取合理的求解規則,即具有自學習能力,并具有一定的推廣、概括能力[4]。
為了使網絡收斂速度加快對訓練樣本(輸入和輸出),一般采取先歸一化再訓練的方法[5],即樣本的取值范圍都是[0,1]。中間層訓練函數tansig,輸出層訓練函數tansig的定義域都是[-1,+1],都包括了樣本的取值范圍。在這里學習函數設為trainlm收斂速度較其他學習函數要快。誤差設為0000 1,是因為訓練樣本采取了先歸一化再訓練的方法,其結果的誤差會隨著反歸一化變換時被放大,所以目標誤差設定要小一點,但是不能太小,否則會產生過擬和現象。
Matlab程序(BP網絡的訓練部分):
net=newff(Pr,[75,1],{′tansig′,′tansig′},′trainlm′); net.trainParam.epochs=1 500; net.trainParam.goal=0000 1;
net.trainParam.show=1; net.trainParam.lr=0.08; net =train(net,p,T);
網絡的逼近、推廣能力同學習樣本的典型性密切相關,而從問題中選取典型樣本實例組成訓練集是一個很困難的問題。一般來說,要保證BP網絡模擬曲線逼近原參數曲線,在選取訓練點時注意兩個條件:第一,盡量使訓練點分布平均,即在各個S參數曲線上的訓練點盡量相等[6];第二,盡量在S參數曲線上保持平均分布。本文為了說明BP網絡性質是隨機選取的訓練點,可能不滿足這兩個條件,但是在應用HFSS時,就可以在平均在各個S參數曲線上取訓練點,而且在各個S參數曲線上按一定步長選取訓練點,這樣就可以保證上述兩個條件,使BP網絡模擬曲線盡量逼近原參數曲線,獲得一定數量的預測值[7]。
2.1 改變樣本點數量
圖2為樣本點為2 500時的模擬S11曲線。圖3為樣本點為1 500時的模擬S11曲線。訓練誤為差0000 1,學習效率為008,中間層數為75,中間層訓練函數tansig,輸出層訓練函數tansig,學習函數trainlm。
圖2 樣本點為2 500時的模擬S11曲線
由圖2,圖3可知,在訓練目標誤差為0000 10的情況下,用1 500個點頻值模擬3 600個值的S11參數曲線,減小了多一半的工作量,可以看出,隨著樣本數量的減少,網絡逼近能力變差。
一般來說,隨著樣本數量的減少,網絡的泛化能力將變差。泛化能力差,預測能力(也稱逼近能力)也差,并且一定程度上,隨訓練能力地提高,預測能力也提高。但這種趨勢有一個極限,當達到此極限時,隨訓練能力的提高,預測能力反而下降,即出現所謂“過擬合”現象[8]。此時,網絡學習了過多的樣本細節,而不能反映樣本內含的規律。
圖3 樣本點為1 500時的模擬S11曲線
2.2 改變中間層數量
圖4(a)是中間層為200的情況,訓練目標誤差為0000 10,訓練達到目標誤差所用步數為98步。圖4(b)是中間層為75 的情況,訓練目標誤差為0000 10,訓練達到目標誤差所用步數為153步。圖4(c)是中間層為50的情況,訓練目標誤差為0000 10,訓練達到目標誤差所用步數為512步。
由圖4可知,中間層數量對訓練函數所用迭代次數有影響,這實質上是網絡容量的可能性與可行性的關系問題,即學習復雜性問題。同時中間層數量對訓練函數的收斂性也有重要的影響,中間層數過少,可能會導致訓練函數過程的不收斂[9]。從數學角度看,BP算法為┮恢知局部搜索的優化方法,但它要解決的問題為求解復雜非線性函數的全局極值,因此,中間層數量過少時,算法很有可能陷入局部極值,使訓練失敗[10]。
2.3 改變學習效率
圖5(a)是學習效率為0.08的情況,訓練達到目標誤差所用步數為153步。圖5(b)是學習效率為0.04的情況,訓練達到目標誤差所用步數209步。圖5(c)是學習效率為0.02的情況,訓練達到目標誤差所用步數為296步。
由圖5可知,學習效率對BP網絡預測效果,即泛化能力影響不大,對訓練達到目標誤差所用迭代次數有影響。由于BP算法本質上為梯度下降法,而它所要優化的目標函數又非常復雜,因此,隨著學習效率降低,必然會出現鋸齒形現象,這使得BP算法低效,而且由于優化的目標函數很復雜,它必然會在神經元輸出接近0或1的情況下,出現一些平坦區,在這些區域內,權值誤差改變很小,使訓練過程幾乎停頓,即存在麻痹現象[7]。
圖4 不同中間層數的模擬S11曲線
圖5 不同學習效率下的模擬S11曲線
3 結 語
本文以計算貼片天線的S11參數為例,具體說明了神經網絡(這里用的是BP網絡)在天線設計中的應用, 基于神經網絡的優化計算是用某系統的輸入輸出來訓練網絡,利用神經網絡的聯想存儲及自學習功能,在相同的輸入下,使網絡具有與原系統相似的輸出。這樣,就可以用網絡的輸出來模擬原系統的輸出,而神經網絡的處理速度一般來說是很快的,從而達到加快計算的目的。隨著天線設計的復雜程度提高,設計周期在減小,本方法具有廣泛的應用前景。
參考文獻
[1]鐘順時.微帶天線理論與應用[M].西安:西安電子科技大學出版社,2000.
[2]張青貴.人工神經網絡導論[M].北京:中國水利水電出版社,2004.
[3]海金.神經網絡原理[M].葉世偉,譯.北京:機械工業出版社,2004.
[4]飛思科技產品研發中心.神經網絡理論與Matlab 7實現[M].北京:電子工業出版社,2005.
[5]哈根.神經網絡設計 [M].戴葵,譯.北京:機械工業出版社,2005.
[6]Georg Dorffner. Artificial Neural Networks [M]. [S.l.]: ICANN, 2001.
[7]許東.基于Matlab 6.X 的系統分析與設計――神經網絡[M].西安:西安電子科技大學出版社,1998.
[8]田景文,高美娟.人工神經網絡算法研究及應用[M].北京:北京理工大學出版社,2006.