發布時間:2022-07-05 14:38:54
序言:寫作是分享個人見解和探索未知領域的橋梁,我們為您精選了8篇的數字化測繪技術論文樣本,期待這些樣本能夠為您提供豐富的參考和啟發,請盡情閱讀。
中圖分類號:U412.36+6文獻標識碼:A
隨著我國改革開放的不斷深入,我國經濟和科技都得到很快的發展,尤其是近年來,政府不斷加快城市化進程,使得相關部門不得不盡快完善城市交通建設,以便人們生活能便利出行。科技水平的提升為公路勘察工作提供保障。數字化測繪技術在高速公路勘察設計中得到很好的應用,其能提升勘察結果數據的高精準度,并且信息數據十分詳細,極大地提升了高速公路勘察工作的效率和質量。因此,數字化測繪技術在高速公路勘察設計中的應用具有重要的作用和意義。
1高速公路勘察設計中主要的工程測量工作
高速公路勘察設計施工工程測量工作的重要組成部分,在工程施工前必須要進行勘察工作,為公路路線的合理規劃提供精準的數據信息,并且能根據信息資源繪制帶狀地形圖,對公路縱橫面進行測量,然后繪制成施工設計圖紙。因此高速公路勘察設計工程測量工作十分重要,其具體的工程測量主要表現在以下幾個方面。 [1]
1.1勘察設計的準備階段測量工作
設計前工作人員要進行初步的測量,才能對公路段施工情況有一個具體的了解,才能勾勒出基本的路面地形圖,進而才能深入進行下一步勘察設計工作。初步階段設計工作人員要擬定修建原則,選定設計方案和計算主要工程數量,并且提出施工方案建議和編制工程預算等,這些工作要順利進行必須要對整個工程項目有初步的了解,通過勘察得知施工基本面積和施工難度,進而才能計算工程基本施工成本。初步設計具有不確定性,一般會根據工作特殊情況,設置兩套方案,方案一一般是在1:10000地形圖上做多個必選方案,紙上布線完成后,然后再按照1:2000的比例進行地形圖測量工作,在1:2000的地形圖上進行紙上定線,設置公路通道。在初步設計工作人員需要進行平面高程控制測量、地形圖測量以及必要的平縱橫測量等工作,這些方面是初步設計工作的主要內容。
1.2施工圖紙設計階段工程測量工作
在初步勘察完成后,工作人員會對施工地形各方面的情況有一個初步了解,在初步設計的基礎上,工作人員要確定施工圖紙,因此,工作人員要在1:2000比例圖上進行方案比選,確定最終施工路線方案。在這個部分工作中,工作人員需要對中線放樣進行測量、公路縱橫面測量、主要施工點地形圖測量以及主要控制地物高等控制測量等方面的工作。這些都是高速公路勘察設計中需要進行的測量工作,其對測量的精度有相當高的要求,而數字化測繪技術的普及和使用,恰好能滿足勘察設計測量的需求。[2]
2數字化測量技術在高速公路勘察設計中的應用
2.1控制測量
控制測量主要在高速公路工程地面地形的測量方面,通過測量在地面布設一系列的控制點,然后準確的確定這些點的位置,方便工作人員能順利進行放線和測量放樣等工作。首先要根據設計方案的比例圖,根據比例圖中初步設定的位置展開測量,工作人員要利用數字測繪工具,搜集相應的路基、構造物等資料,進而能更好的進行控制測量,并且確保測量工作效率和準確性。
2.2坐標系統測量
坐標系統測量主要是地面水準面、參考橢球以及坐標系等方面的測量和確定。地面水準面是接近地球自然表面的不規則橢球曲面,工作人員應該選擇比較相近的物體與之接近,然后用簡單數學表示的體形來代表,確定坐標位置。一般坐標測量要利用基礎的測繪儀器,對高斯平面直角坐標以及坐標分帶進行測量。 [3]
2.3獨立高等控制測量
獨立等高控制測量主要是利用GPS技術測距、定位以及建立三維坐標系統,這方面的工作需要利用GPS衛星高空掃面技術,為勘察設計工作人員提供信息數據。GPS技術操作簡單,其精準度非常高,因此,在勘察設計測量工作的運用具有積極的推廣意義。
2.4地形圖航空攝影測量
地形圖航空攝影測量主要是根據公路工程特點,長路線采集,在飛機上安裝攝影機,然后對觀測地區進行高空攝影,以獲得高清的視頻圖像,然后將攝影圖像與地形圖進行比對分析,最終能清楚的確定公路工程施工設計方案,避免對周圍路面基礎的影響。高空攝影獲取地形圖像后,工作人員還要處理高航攝影的圖像,根據控制點的布設,測定公路平面、高程三維坐標,并且糾正航攝中的誤差。其次,工作人員還要形成業內圖,讓勘察設計工作人員能更加清晰的觀察地形圖。
2.5數字地面模型設計
數字地面模型信息采集施工構建地面模型的重要前提和依據,工作人員要利用數字測繪技術,大量采集地形點三維坐標,按照一定的數學模型分析和聯網,最終通過空間點的連接,構建施工設計所需要的地形起伏數字模型。這種模型的建立和使用能提升 施工設計方案的科學性和可行性,進而順利完成公路工程。數字測繪技術在高速公路勘察設計工程測量工作中的應用范圍十分廣泛,工作人員要充分利用現代化數字化技術,提升勘察測量結果的精確度,確保設計方案的可行性。 [4]
3結束語
綜上所述,數字化測繪技術在高速公路勘察設計中的應用具有重要的作用和意義,并且實踐證明數字化測繪技術在高速公路勘察設計中的應用具有很好的效果。數字化測繪技術的高精準度、操作簡單以及其能節約大量的勞動力資源等,這些方面的優勢使得高速公路勘察工作效率和質量都得到提升。因此,未來我國技術研究工作人員還需要進一步開發新工藝和新技術,不斷的完善公路勘察設計工作的基礎設備,進一步提升勘察工作的水平和質量。
參考文獻:
[1] 竇愛霞,王曉青,袁小祥.基于機載LIDAR的建筑物震害自動識別方法[A]. 中國地震學會空間對地觀測專業委員會2012年學術研討會論文摘要集[C]. 2012
[2] 郜鍵,孫劍峰,魏靖松,王騏.基于條紋管激光成像雷達水下目標探測研究[A]. 魯豫贛黑蘇五省光學(激光)學會2011學術年會論文摘要集[C]. 2011
關鍵詞:數字化;測繪;優勢;應用;發展前景
隨著經濟發展的加速,測繪作為國家基礎設施建設、國防建設提供了及時的保障手段;為環境保護、防震減災等提供了及時有效的服務措施,已成為與人民生活息息相關的有機構成。因此,現代信息社會下,加強數字化技術的應用,推進測繪科學的可持續發展作為測繪專業這項浩瀚工程中不可或缺的根基,其重要性已經受到全社會的廣泛關注。也正因測繪中數字化技術的運用,使測繪工作中元素的訴求更為清晰,信息的傳達更加科學準確,手法的運用更加豐富多彩。可以說,當今信息時代下,數字化技術的應用成效是測繪工作的關鍵保障。因此,從這個意義上來說,探討數字化技術在測繪中的應用意義非凡,影響深遠。
一、數字化測繪技術
現代的數字化測繪技術是伴隨著計算機、網絡技術的發展及測量儀器的智能化而興起的一門新興的測繪技術。“數字中國”、“數字城市”等概念的提出以及相關數字化工程的啟動,特別是全球定位系統(GPS)、地理信息系統(GIS)、攝影測量與遙感(RS)以及數字化測繪和地面測量先進技術的發展,使工程測量的手段和方法產生了深刻的變化。工程測量的服務領域也相應進一步延伸,而且正朝著測量數據采集和處理的自動化、實時化和數字化方向發展。
二、數字化測繪技術的優勢
數字化技術在測繪專業中的應用有著傳統測繪手段無法比擬的優勢,如:通過多媒體手段,讓測繪在圖文并茂的、豐富多彩的人機交互操作模式中更為形象、直觀的展現出應用的效果。且在人跡罕見的地區,數字化技術更是彌補了傳統地籍測繪手段大量依靠人力的測繪模式,因此,數字化技術在測繪專業中的應用具體有積極的現實意義,有著諸多便利之處。
(一)形象直觀
傳統測繪手段下線條、符號、數字、文字等數據紛繁復雜,若非具有一定的專業知識,很難看懂。而數字化技術可以通過多媒體的模擬,在屏幕上直觀生動地反映出測繪中的基本元素,如:地形、地貌特征以及地籍要素。且一目了然、通俗易懂。
(二)方便快捷
數字化技術應用下的測繪產品可以隨時補充修改,因地制宜,做出調整。無論是使用、維護,還是更新都具有方便快捷的特性。
(三)科學精準
在城市建設中,各種測繪數據需要進行反復比對、分析,進行可行性評估,以使土地資源利用達到最佳效率,對測繪技術的要求益發精準細致,如:城市交通道路網的科學規劃,城市建筑布局的綜合考量等等。利用數字化技術下應用測繪成果,可運用多媒體進行各種規劃與設計,可以方便地進行許多方案的設計與比較,對各種要素的統計、匯總、疊加、分析,因此得出的結論往往更為科學、準確。
總而言之,在數字化技術的應用下,大大提高了測繪作業的自動化、科學化、規范化,應用水平的提高也在日新月異,顯示出諸多優越所在。測繪實踐也表明,數字化技術的運用是現代測繪的發展方向,符合現代社會發展的需求,因此,在測繪專業可持續發展進程中,數字化技術的應用大有可為。
三、數字化技術在工程測量中的應用
大比例尺地形圖和工程圖的測繪,是城市與工程測量的重要內容和任務。常規的成圖方法是一項腦力勞動和體力勞動結合的艱苦的野外工作,同時還有大量的室內數據處理和繪圖工作,成圖周期長,產品單一,難以適應飛速發展的城市建設和現代化工程建設的需要。
隨著電子經緯儀、全站儀的應用和GEOMAP系統的出現,把野外數據采集的先進設備與微機及數控繪圖儀三者結合起來,形成一個從野外或室內數據采集、數據處理、圖形編輯和繪圖的自動測圖系統。系統的開發研究主要是面向城市大比例尺基本圖、工程地形圖、帶狀地形圖、縱橫斷面圖、地籍圖、地下管線圖等各類圖件的自動繪制。系統可直接提供紙圖,也可提供軟盤,為專業設計自動化,建立專業數據庫和基礎地理信息系統打下基礎。
80年代以來,我國數字化測繪技術的開發研究和應用發展很快,成效顯著。由于技術標準和規范不同,國外研究成功的數字化測繪系統不適合國情,難以推廣應用,只有依靠自己研究開發。1987年北京市測繪設計研究院在國內首先完成了“大比例尺數字化測圖系統”(即DGJ)的軟件開發,并通過技術鑒定,1990年被建設部列為第一批技術推廣應用項目之一,在80多個城市及工程測量單位推廣應用,同時又有十幾個大專院校、儀器公司和工程測量單位,先后開發和研制出多個類似的數字測圖系統軟件。目前投入使用的數字化測圖軟件主要有以下類型:
(一)使用全站儀或半站儀,在野外數據采集采用編碼和繪制草圖,利用各類記錄器或微型計算機記錄,數據輸入計算機進行數據處理和圖形編輯,繪圖儀輸出成圖,所采集的數據可以繪制成不同比例尺地形圖或專業圖,也可進入數據庫,如北京市測繪設計研究院研制的DGJ系統、南方測繪公司研制的CASS系統、瑞得公司研制的RPMS系統等。
(二)利用全站儀和便攜機(即電子平板)相結合,在野外采集數據,無需編碼,測量數據直接進入電子平板繪圖,現場修改編輯顯示,最后由繪圖儀輸出成果,其特點是電子平板在測站代替常規測圖板直觀,便于修改。另一種是便攜機由跑尺人員操作,測點觀測數據通過遙控信號轉換,自動送到便攜機,測點實時顯示在屏幕上,跑尺人員進行圖形編輯,更能保證成圖質量。前者如清華山維公司研制的EPSW電子平測圖系統。后者如廣州開思公司研制的SCS遙感電子平板系統。根據調研的不完全統計,目前我國有60%城市與工程測量單位已不同程度的應用數字化測繪技術。目前存在的難題是數字化測繪系統的數據規格、標準還不能滿足GIS的要求,所以,要制定一套標準化數據格式,使得數字化測繪成果既能滿足地形圖和專業圖的需求,同時又能通過數據交換滿足各類GIS的應用,才能更好地推動數字化測繪技術的發展。
四、數字測繪技術在工程測量中的發展前景
在未來的測繪領域,工程測量的數字化測繪軟件的研發將進一步深化,將出現功能齊全、效率更高、使用更加靈活的軟件系統。一方面數字測繪技術[5]與GIS的結合將更加緊密,數字信息的采集通過數據轉換直接進入數據庫,實現一測多用,數據共享,將實現全球數據更新和空間基礎信息系統的動態管理。另一面數字測繪技術與工程設計施工相結合的軟件系統的研發與應用將會有更新、更快的發展,為勘測、設計、施工建立專業信息管理系統創造良好的條件。
隨著我國國民經濟的飛速發展,各種復雜的、特殊的、精密的工程建設不斷增多,相應對工程測量技術的要求也越來越高。21世紀是知識經濟的信息時代,推進數字測繪技術的發展及其在工程測量中的廣泛應用,大力促進工程測量技術方法和手段的更新換代,使工程測量技術向電子化、自動化、數字化、信息化方向邁進是工程測量技術發展的基本目標。
參考文獻:
[1]張健. 工程測量中數字技術的研究[J]中國新技術新產品,2009,(07).
[2]鄒振興. 數字化測繪技術的特點及在工程測量中的應用探討[J]. 中國高新技術企業,2008,(19).
[3]賀麗娟,曹振。數字化測繪技術在工程測量中的應用。西北水電,2002。
【關鍵詞】測繪技術;現代工程測量;應用;發展分析
前言
隨著測繪技術的不斷發展,工程測量數據在采集和處理過程中的自動化程度也日益提高,逐步向數字化、實時化和規范化的方向上發展。如今,隨著以全球衛星定位技術(GPS)、遙感技術(RS)、地理信息技術(GIS)等各種新技術在工程測量中的不斷應用,為我國工程測量事業發展提供了極為堅實的動力。
一、當代新興現代測繪技術的發展概況
(一)全球衛星定位技術(GPS)
在進行工程測量的過程中,GPS技術使用不僅較為簡單,而且測量時間較短,其采取衛星導航這一技術的屬性也在根本上提高了其抗干擾能力,保密性較高。因此,GPS技術在如今得到了極為廣泛的應用,已經成為在許多行業中都起到十分重要作用的通用技術[1]。
在GPS的技術上,實時動態的測量技術(RTK)也得到了極為迅速的發展,不僅不再需要布設控制點等復雜的技術,而且可以一次成型,大大的減少了人力和物力的成本。因此,在施工放樣工作、工程測繪工作、數字化測圖工作中都會起到極為顯著地作用。
(二)地理信息技術(GIS)
GIS立足于計算機編程,以測繪測量為基礎,本質上是一種對空間對象進行管理的信息系統。如今,隨著人類社會科學技術水平的不斷發展,GIS逐步實現了網絡平臺化和應用的社會化。可以說,GIS已經成為了當代測繪技術的發展方向[2]。
(三)遙感技術(RS)
遙感技術在測量中的具體應用主要是利用波譜進行探索,而后對不同物體產生的響應來作為依據。如今,隨著科學技術的不斷發展,通過遙感來感知和觀察事物已經更為有效,其應用范圍也日益廣泛,在水文、氣象、地質、地理、資源環境等領域都得到了極為突出的應用,是一種現代新興的先進空間探測技術。
如今,航空遙感技術已經成為進行地形圖測繪最為重要的手段,在實踐中得到了極為廣泛的應用,不僅可以準確而及時的收集各種數據,而且還能及時的對數據進行各種有效的處理。因此,使用者可以獲得更加精確的圖形和數據,最終取得更為科學、準確的地形測量。
二、現代化測繪技術在當今工程測量中的應用
若想對于原有地圖進行數字化的處理,可以發揮CIS系統的作用,在原圖數字化處理中加以應用,以高精度、準確的比例尺和原始性滿足各種要求。目前,利用數字化儀主要依靠三種不同的方法,即掃描矢量化、GPS數據輸入和手扶跟蹤數字化。
這種數字化的輸入雖然起步較晚,但是發展速度較快,輸入準確,但是也存在著輸入速度慢、勞動強度大等不住。此外,在對于實體空間的位置進行探測和確定時,主要依靠矢量跟蹤,而矢量跟蹤也隨著現代科技的發展而不斷升級,自動化程度和有效化應用不斷提高。測定三維空間位置所依靠的主要是GPS輸入,能夠準確的對于地球表面的圖形位置進行準確的確定,并且不需要進行其他的轉換而直接輸入數據庫之中,極大地方便了日常應用。
在如今的工程測量過程中,使用新型的GPS技術可以達到厘米級的精度,可以極為快速、準確的對于各種坐標進行確定,如果在野外,依靠測圖軟件便可以一次性的生成電子地圖,十分的方便使用[3]。
在如今的工程測量工作中,使用最多的便是數字掃描矢量化軟件,這種軟件不僅極為準確和實用,而且能夠自動提取各種多變形信息,具有著高效、便捷、保真的優點。
三、現代化測繪技術在當今工程測量中具體應用分析
(一)在地籍測量中的應用
隨著我國經濟的快速發展,我國社會的城市化建設不斷加快,全國范圍內均開展了地籍測量工作,對于地籍地圖的要求也不斷提高,可以十分便捷和準確的對于全國土地信息進行統計,包括面積、屬性、使用情況等。如今,和傳統的測繪技術相比現代化的測繪系統在使用中更為便捷,維護也極為方便,具有極為顯著地優越性。
(二)在水利工程中的應用
采取遙感技術可以及時的檢測江河湖泊的水文變化,當遭遇災害時,現代的遙感技術可以極為準確的提供信息,使得控制災情和預防災害的工作中能夠取得有效地技術支持[4]。
(三)在工程建設中的應用
在工程建設中,新型的測繪技術可以及時的觀測到各種數據,不僅有利于工程的施工,而且也能保證工程的安全性,使用也極為方便,簡單的機械裝置便可以完成對于復雜工地的檢測工作,并且輸送、拷貝、復制也極為方便,具有極為顯著地應用價值。
結束語
隨著世界經濟的不斷發展,科學技術的突飛猛進,尤其是現代計算機網絡信息化技術的不斷完善,在客觀上促進了現代測繪技術的不斷發展,測繪技術已經擺脫了原有的附屬地位,而是成為一種新型的科學。正因如此,我們必須要不斷地進行學習和創新,才能真正的掌握新型的測繪技術,不僅能夠促進測繪技術本身的發展,而且也會對我國社會各項建設起到極為重要的推動作用。
參考文獻:
[1]曹國忠;楊喜明.測繪技術在現代工程測量中的應用[J]..科技資訊,2013,01(02):34-36.
[2]吳東.淺談測繪技術在現代工程測量中的應用[J].黑龍江科學,2014,05(05):56-59.
論文摘要:工程測量有著悠久的歷史,它是直接為國民經濟建設和國防建設服務,緊密與生產實踐相結合的學科。本文分析了我國工程測量技術發展和應用現狀,并對其發展前景進行了展望。
1前言
工程測量通常是指在工程建設的勘測設計、施工和管理階段中運用的各種測量理論、方法和技術的總稱。傳統工程測量技術的服務領域包括建筑、水利、交通、礦山等部門,其基本內容有測圖和放樣兩部分。現代工程測量己經遠遠突破了僅僅為工程建設服務的概念,它不僅涉及工程的靜態、動態幾何與物理量測定,而且包括對測量結果的分析,甚至對物體發展變化的趨勢預報。蘇黎世高等工業大學馬西斯教授指出:“一切不屬于地球測量,不屬于國家地圖集的陸地測量,和不屬于法定測量的應用測量都屬于工程測量”。隨著傳統測繪技術向數字化測繪技術轉化,我國工程測量的發展可以概括為“四化”和“十六字”,所謂“四化”是:工程測量內外業作業的一體化,數據獲取及其處理的自動化,測量過程控制和系統行為的智能化,測量成果和產品的數字化。“十六字”是:連續、動態、遙測、實時、精確、可靠、快速、簡便。
2我國工程測量技術現狀
2.1先進的地面測量儀器在工程測量中的應用。
20世紀80年代以來出現許多先進的地面測量儀器,為工程測量提供了先進的技術工具和手段,如:光電測距儀、精密測距儀、電子經緯儀、全站儀、電子水準儀、數字水準儀、激光準直儀、激光掃平儀等,為工程測量向現代化、自動化、數字化方向發展創造了有利的條件,改變了傳統的工程控制網布網、地形測量、道路測量和施工測量等的作業方法。三角網已被三邊網、邊角網、測距導線網所替代;光電測距三角高程測量代替三、四等水準測量;具有自動跟蹤和連續顯示功能的測距儀用于施工放樣測量;無需棱鏡的測距儀解決了難以攀登和無法到達的測量點的測距工作;電子速測儀為細部測量提供了理想的儀器;精密測距儀的應用代替了傳統的基線丈量。
2.2GPS定位技術在工程測量中的應用。
GPS是美國從20世紀70年代開始研制,歷時20年,耗資200億美元,于1994年全面建成,具有海、陸、空進行全方位實施三維導航與定位能力的新一代衛星導航與定位系統。隨著GPS定位技術的不斷改進,軟、硬件的不斷完善,長期使用的測角、測距、測水準為主體的常規地面定位技術,正在逐步被以一次性確定三維坐標的高速度、高精度、費用省、操作簡單的GPS技術代替。
在我國GPS定位技術的應用已深入各個領域,國家大地網、城市控制網、工程控制網的建立與改造已普遍地應用GPS技術,在石油勘探、高速公路、通信線路、地下鐵路、隧道貫通、建筑變形、大壩監測、山體滑坡、地震的形變監測、海島或海域測量等也已廣泛的使用GPS技術。隨著DGPS差分定位技術和RTK實時差分定位系統的發展和美國AS技術的解除,單點定位精度不斷提高,GPS技術在導航、運載工具實時監控、石油物探點定位、地質勘查剖面測量、碎部點的測繪與放樣等領域將有廣泛的應用前景。
2.3數字化測繪技術在工程測量中的應用。
數字化測繪技術在測繪工程領域得以廣泛應用,使大比例尺測圖技術向數字化、信息化發展。大比例尺地形圖和工程圖的測繪,歷來就是城市與工程測量的重要內容和任務。
常規的成圖方法是一項腦力勞動和體力勞動結合的艱苦的野外工作,同時還有大量的室內數據處理和繪圖工作,成圖周期長,產品單一,難以適應飛速發展的城市建設和現代化工程建設的需要。隨著電子經緯儀、全站儀的應用和GEOMAP系統的出現,把野外數據采集的先進設備與微機及數控繪圖儀三者結合起來,形成一個從野外或室內數據采集、數據處理、圖形編輯和繪圖的自動測圖系統。系統的開發研究主要是面向城市大比例尺基本圖、工程地形圖、帶狀地形圖、縱橫斷面圖、地籍圖、地下管線圖等各類圖件的自動繪制。系統可直接提供紙圖,也可提供軟盤,為專業設計自動化,建立專業數據庫和基礎地理信息系統打下基礎。
20世紀80年代以來,我國數字化測繪技術的開發研究和應用發展很快,成效顯著。由于技術標準和規范不同,國外研究成功的數字化測繪系統不適合國情,難以推廣應用,只有依靠自己研究開發。1987年北京市測繪設計研究院在國內首先完成了“大比例尺數字化測圖系統”(即DGJ)的軟件開發,并通過技術鑒定,1990年被建設部列為第一批技術推廣應用項目之一,在80多個城市及工程測量單位推廣應用,同時又有十幾個大專院校、儀器公司和工程測量單位,先后開發和研制出多個類似的數字測圖系統軟件。
2.4攝影測量技術在工程測繪中的應用。
攝影測量技術已越來越廣泛的在城市和工程測繪領域中得以應用,由于高質量、高精度的攝影測量儀器的研制生產,結合計算機技術中的應用,使得攝影測量能夠提供完全的、實時的三維空間信息。不僅不需要接觸物體,而且減少了外業工作量,具有測量高效、高精度,成果品種繁多等特點。在城市和工程大比例尺地形測繪、地籍測繪、公路、鐵路以及長距離通訊和電力選線、描述被測物體狀態、建筑物變形監測、文物保護和醫學上異物定位中都起到了一般測量難以起到的作用,具有廣泛的應用前景。由于全數字攝影測量工作站的出現,為攝影測量技術應用提供了新的技術手段和方法,該技術已在一些大中城市和大型工程勘察單位得以引進和應用。
航空攝影測量是進行城市大面積大比例尺地形圖、地籍圖測繪與更新以及大型工程勘測的重要手段與方法,它可以提供數字的、影像的、線劃的等多種形式的地圖成果。目前,我國有100多個城市或工測單位利用航測技術測制大比例尺地形圖和地籍圖,最大比例尺為1/500。采用的儀器除利用高精度的模擬測圖儀和解析測圖儀成圖方法外,還用立體坐標測圖儀與微機連接進行數據采集,經微機數據處理輸入繪圖機自動繪圖。
3工程測量技術的發展展望
展望21世紀,工程測量將在以下方面將得到顯著發展:
測量機器人將作為多傳感器集成系統在人工智能方面得到進一步發展,其應用范圍將進一步擴大,影像、圖形和數據處理方面的能力進一步增強。
在變形觀測數據處理和大型工程建設中,將發展基于知識的信息系統,并進一步與大地測量、地球物理、工程與水文地質以及土木建筑等學科相結合,解決工程建設中以及運行期間的安全監測、災害防治和環境保護的各種問題。
大型復雜結構建筑、設備的三維測量,幾何重構及質量控制,以及由于現代工業生產對自動化流程,生產過程控制,產品質量檢驗與監控的數據與定位要求越來越高,將促使三維業測量技術的進一步發展。工程測量將從土木工程測量、三維工業測量擴展到人體科學測量。
多傳感器的混合測量系統將得到迅速發展和廣泛應用,如GPS接收機與電子全站儀或測量機器人集成,可在大區域乃至國家范圍內進行無控制網的各種測量工作。
GPS、GIS技術將緊密結合工程項目,在勘測、設計、施工管理一體化方面發揮重大作用。
在人類活動中,工程測量是無處不在、無時不用,只要有建設就必然存在工程測量,因而其發展和應用的前景是廣闊的。
參考文獻:
關鍵詞:土地信息系統、數據質量、誤差、分辨率、坐標變換、矢量數據、柵格數據、拓撲
Abstract:DataisveryimportantforLandInformationSystem,AkeytoLandinformationthesystem''''sdevelopmentssuccessiswhetherthedataquantityisaccuracy.ThispaperwillStudythedataquantitytheprobleminLandinformationthesystemestablishtheprocess.
Keywords:LandInformationSystems;DataQuality;Error;Accuracy;RemoteSensing;Digitize;Resolution;CoordinateTransformation;VectorData;RasterData;Topological.
一、前言
土地是人類的寶貴財富,是人類社會進行物質生產所必需的基本條件和自然基礎。如何科學、合理地利用有限的土地資源,如何及時了解與掌握土地利用變化數量和空間特點,對于保持耕地總量動態平衡和土地持續利用具有十分重要的意義。
隨著社會經濟的日趨多樣化,土地部門的業務工作及范圍也在不斷擴大,原有的靠手工操作,圖紙管理的模式已經越來越不能滿足高效率的需求。為強化土地管理,滿足社會對土地資源信息更多、更細、更完善的服務要求,各土地管理部門紛紛加入信息化、數字化的改革大潮。特別是在市場經濟條件下,因土地管理部門工作的嚴肅性、準確性、科學性和規范化要求,管理中任何規定的確定和變更都需要完成大量的信息收集、分析、綜合、決策和評估等工作,土地管理也只有強有力的信息技術(IT)的支持下,才能做到真正的科學決策和管理。
土地信息系統(LIS)是地理信息系統的一個分支,是一種基于宗地[以宗地(地塊)為單位]的計算機管理信息系統。是一種利用計算機技術及其屬性數據進行采集、處理、管理、查詢、分析、應用和維護更新的空間信息系統,是土地管理的現代化工具,是土地規劃和管理定量化、科學化的方法、手段。但是,在土地信息系統的建設過程中,還存在許多問題,給土地信息系統的建設及發揮帶來一定困難。這里僅對土地信息系統建設中的數據質量問題進行探討。
二、對LIS數據質量的認識
數據是一種未經加工的原始資料,是客觀對象的表示,它可以是數字、文字、符號、圖像,數據是信息的具體表達形式。一個LIS系統包括空間數據、屬性數據、空間數據之間的關系以及空間數據與屬性數據之間的關聯。
人們往往以為計算機為基礎的信息系統的數據質量是可靠的,很少懷疑利用信息系統產生的分析結果在數據質量方面會有問題,但事實遠非如此。在某些情況下,由于多種原因,計算機分析的結果甚至會比手工分析的誤差更大。這里除軟件、硬件的質量問題,計算方法上的問題,以及分類、編碼、輸入、操作的明顯疏忽外,數據本身的質量是重要的原因。
眾所周知,數據是LIS的“血液”,是組成系統的重要元素。數據質量的好壞是土地信息系統成功與否的關鍵所在;數據質量的高低優劣,都直接影響到土地信息系統的經濟效益和社會效益,決定了系統應用價值的大小;數據的可靠,質量的好壞將直接影響到整個系統的成敗。系統如果不能提供正確、可靠的信息,這個系統也就失去了存在的價值。
數據質量的好壞是一個相對概念,并具有一定的針對性。衡量其好壞主要有以下幾個指標:誤差、數據的準確度、數據的精度和不確定性[1]。數據質量是數據整體性能的綜合體現。
統而言之,數據的質量問題主要表現在兩個方面:一是數據是否及時反映了現實世界;二是數據是否保持了一致性和完整性。
土地信息系統的數據量大,數據來源廣,數據采集的任務重,在數據庫建立過程中會出現許多人為和系統的誤差,甚至還有可能產生數據錯誤,最后采集的數據無法準確反映規劃和管理的實際狀況,建立在此數據庫基礎上的系統往往也就達不到管理自動化輔助決策的目的,而只不過是“看看而已”的一種“擺設”罷了。
數據庫(包括空間數據庫和非空間數據庫)是土地信息系統最基本、最重要的組成部分,也是投資比重最大的部分。數據質量的好壞,直接影響系統的功能和應用。不僅要根據技術規程衡量數據質量,還要從數據使用角度分析數據質量問題。數據質量通常是指數據的可靠性和精度,它主要用數據的誤差來度量的。現就土地信息系統建立過程中的數據質量問題作進一步的探討。
三、數據源質量的問題
土地信息系統的數據源指建庫中所需要的各種數據類型的來源。它是土地信息系統最基本、最重要的組成部份。土地信息系統的數據源多種多樣,主要包括有:地圖,地圖是系統最主要的數據源,因為地圖是地理數據的傳統描述形式,是具有共同參考坐標系統的點、線、面的二維平面形式的表示,內容豐富,圖上實體間的空間關系直觀,而且實體的類別和屬性可以用各種不同的符號加以識別和表示。土地信息系統其圖形數據大部分都來自地圖,土地信息系統的屬性數據主要有地籍圖、宗地圖、土地詳查圖、土地利用現狀圖、行政區劃圖、專題圖、乃至地形圖等各種圖件的矢量化地圖數據。二是遙感影像數據,遙感影像數據是一個極其重要的信息源。通過遙感影像可以快速、準確地獲得大面積的、綜合的各種專題信息,航天遙感影像還可以取得周期性的資料,這些都為土地信息系統提供了豐富的信息。三是統計數據,包括土地的分類、面積、權屬、分布及質量、等級狀況、利用狀況、非法占地等統計資料。四是實測數據,包括GPS點位數據、地籍測量數據等。五是數字數據,包括數字圖形數據和屬性數據。數字數據主要有地籍號、檔案卷宗號、地類號、圖號、手簿號、宗地界址點點號及坐標控制點坐標,宗地面積,面積中誤差、年代、日期等等。屬性數據包括圖形、圖像以外的各種文字、數字信息。其中文字信息主要是與宗地檔案,文件檔案組成相關的各種檢索和查詢信息(如:土地權利人姓名或單位各稱、土地座落,文件檔案的標題、發文機關、公文字號等等),以及土地登記、地籍調查、權屬審核、登記發證各辦公流程中的各種鍵盤輸入信息。六是各種立法文件和文字檔案,主要有地籍檔案、文件檔案等具有法律效力或需要經常查閱的原始文件材料,它們是土地信息的重要組成部分,在土地的規劃管理中起著很大的作用。
數據源質量問題指數據的采集和錄入中可能產生的誤差,建庫所需的各種類型的數據的可靠性和精度。
從土地信息系統建立的過程來看,它的主要因素有:各種測量數據,地圖和遙感數據等的誤差;調查和統計造成的屬性數據誤差,以及文檔數據的錯誤等,數字化前的預處理、手扶踀自動化的分辨率和矢量化精度。
1、遙感數據
地理信息系統、遙感和計算機輔助制圖是現代地理學的重要技術手段。遙感作為一種獲取和更新空間數據的強有力手段,能及時地提供準確、綜合和大范圍進行動態監測的各種資源與環境的信息,因此遙感數據是土地信息系統的一個重要數據源。
所謂遙感(RemoteSensing)就是遙遠感知的意思,也就是不直接接觸目標物和現象,在距離地物幾公里到幾百里、甚至上千里的飛機、飛船、衛星上,使用光學或電子儀器接受地面物體或發射的電磁波信號,并從圖像膠片或數據磁帶形式記錄下來,傳送到地面,經過信息處理,判讀分析和野外實地驗證,最終服務于有關部門的規劃決策[2]。土地管理部門可以運用遙感技術快速獲取現狀空間的信息。
盡管遙感技術有很多好處,但因其自身特性,獲取的遙感數據可能存在一些誤差。如:不同的高度引起的問題,由于傳感器的結構及穩定性產生的問題,對信號進行數字化產生的誤差。傳
感器在航線、航向上出現的誤差,大氣輻射產生的誤差,地形和地貌等因素產生的誤差等等。在遙感資料的獲取時,有些誤差是可以控制的,有些則不可控。因此必須對原始數據進行預處理,包括利用地面控制對原始數據進行幾何校正,圖像增強和分類。對獲取的遙感數據進行光譜校正,特征提取,自動識別分類、自動成圖等處理[3]。
2、測量數據
各種原始的測量數據是土地信息系統的主要來源之一。包括宗地的權屬界線、位置、形狀、數量、面積、各級行政界線、地形圖測量等。由于人和環境的因素,測量數據不可避免地受到人為誤差(對中、讀數、平分等誤差)、儀器、環境的影響。來源于地面測量的數字數據中含有控制測量和碎部測量誤差。其中控制點誤差又受控制網的參考基準、網形和觀測精度以及觀測費用等因素的影響。碎部點誤差除了繼承了控制點的誤差外,還受自身觀測方法,觀測精度和地界的人為判斷,以及地物地貌的取舍等因素的影響。當然原始數據誤差受觀測儀器、觀測者和外界環境三種因素影響。除此之外,還有測量數據的實時性以及數據老化,采集數據的密度不合理,或概括取舍不合理,選取測量規范標準不一致或精度等級不一致造成測量數據的不一致的影響。
地籍要素是構建土地信息系統極為關鍵的一步,其測量數據的精度高低決定了系統功能能否得到正確和充分發揮。
從地籍測量成果的有效性和土地管理的可能性來考慮,為了保證各權屬單元之間的界線清晰,邊界無爭議,并且雙方都能接受而不損害他人和國家的利益,地籍測量要達到一定精度。因此,必須要有相應的數據采集方法作為保證。地籍要素的采集方法目前主要有兩種,一種是傳統的模擬式外業測圖方法,另一種是野外全數字化數據采集方法。傳統方法的主要作法是在地籍控制測量的基礎上,用解析法測量出權屬界址點坐標,以控制點或以界址點為基礎施測成地籍圖,要形成入庫數據信息,則要通過對原圖數字化來實現。用傳統數據采集方法形成地籍要素數字信息其誤差影響因素較多,主要誤差來源為:測站點誤差m1,量距誤差m2,在測圖板上描繪方向線誤差為m3,刺點誤差m4,數字化儀采點誤差m5等。按有關專著論述,一般情況下,m1≈±0.12mm,m2≈±0.2,m3≈±0.1mm,m4≈±0.14mm,這四項誤差為野外采集誤差。數字化m5的影響因素比較復雜,誤差產生首先與圖形要素有關,要素本身的復雜程度對數字化精度有顯著影響,數字化儀本身的精度更應引起重視。正常情況下,用常規數字化儀進行數字化時,精度一般可達到±0.13mm。綜合上述得,地籍要素采集精度m采為:
m采=±
=±
=±0.02mm
按1:500比例尺來考慮,實地誤差將達到±10cm,由此可見,按傳統方法施測,則擬入庫的地籍要素信息很難達到規定的±5cm的精度標準[4]。
采用野外全數字化方法,界址點野外數據采集一般采用直接測定坐標法,即將全站儀或測距儀置于測站點上,對界址點上的移動棱鏡進行水平角和距離測定,電子手薄記錄計算。此種方法的主要誤差來源為水平角測角誤差mβ和測距誤差mD,測角中誤差角保守為±5″,測距誤差主要來自移動棱鏡偏離界址點位置誤差,其偏離值按2cm考慮。測距平均邊長取100m,按點位誤差精度估算公式m2=來計算,則m≈±2cm,即便考慮測站誤差和其他偶然的聯合影響,點位精度也肯定在規定范圍內,所以地籍要素信息數據的野外全數字化有利于提高界址點精度,從而保證地籍數據的質量。
3、調查、統計、文檔數據問題
土地信息系統的建設過程中,涉及大量的調查統計數據,這些資料尚存在許多不足之處,為土地信息系統的建設帶來了一定困難。
建立土地信息系統,必須首先進行土地基本信息的搜集,開展地籍調查工作,核實宗地權屬,掌握土地利用狀況,獲得宗地位置、形狀及其面積的準確數據,為建庫奠定基礎。
現就地籍調查工作加以探討,眾所周知,權屬調查的工作之一是填寫地籍調查表。由于權屬調查技術性強,工作量大,參與人員多且水平不同等原因,填寫后的地籍調查表或多或少會出現下面一些問題。在填土地使用者名稱時,單位本應填寫全稱,可出現了類似這樣的情況:某林業局有3宗地,而在3份地籍調查表上出現了xx林業局、縣林業局、林業局等名稱。按這樣的名稱錄入建立信息系統,將導致不能正確地自動的歸戶。在填寫土地使用者性質時,本應該寫“全民”或“集體”或“個體”或“個人”,而出現了“國營”或“國有”或“私營”這樣的名詞。在填寫宗地四至時應說明權屬界線所經地物名稱及歸屬、位置、與誰接壤。但出現了東(南、西、北)至xx,而未填出接xx。且有的四至填寫錯誤,如兩宗地共用一堵墻時,則只能出現兩宗都至墻中,或一宗至墻內另一宗至墻外,但填出了兩宗都至墻外或墻內等情況。在填寫界址標示處的界址線位置時也有類似錯誤,有的表填寫字跡潦草,或使用簡化字,讓人難以辨認。有的內容還可以猜出,但戶主的姓名、調查員、勘丈員的簽名等內容實在難辯;有的表中該填的內容而未填,任意涂改。
共用宗的處理,一個地塊被幾個權屬單位共同使用,而其間又難以劃清權屬界線,這樣的地塊稱為共用宗[5]。不少縣(市)是這樣處理的:有多少土地使用者就填多少份地籍調查表,表上的內容按各分宗填寫。這樣做的好處是所填的內容詳細,調查表和土地登記申請書、審批表形成一一對應的關系。但其弊端也是顯而易見的,其一較大地增大了填表的工作量,其二增大了復雜程度,在填寫四至時,如遇一個土地使用者使用幾個地塊則不得不寫清幾個地塊的四至;為填清界址指標,又得設置內部界址點,增加了宗地草圖和地籍圖的負荷量,填表時如不小心還會造成表與表之間的相互矛盾。為了和地調表統一,有的在形成宗地界址點成果表時,除了有宗地界址點成果表外,還有分宗的界址點成果表。如果內部界址點是在紙圖上圖解的,則將該宗地的宗地界址點和內部界址點和計算機展點后,會出現界址線混亂的情況。在土地信息系統建庫時,這些內部點是不能當界址點錄入進庫的。如進庫則在面積統計時,這種內部界址點所圍成的區域的面積就被多統計了一次。
建立完備的信息系統,必須具備這樣的條件:大比例的地形圖或地籍圖;野外測量的界址點數據;宗地的屬性數據(土地登記申請書、地籍調查表、審批表等)。全省在進行大大規模的城鎮地籍時,由于受當時的條件限制,自動化程度低,各作業單位作業水平的不同,或多或少出現一些問題。在建庫時所發現的問題主要是界址點的坐標成果與地籍上的位置不吻合;相鄰宗的同一界址點坐標不同;界址邊長、宗地面積計算有誤。某些縣(市)為了進行土地登記,由于多方面的原因,在進行初始地籍調查時,只作權屬調查,不作規范的地籍測量。為了計算面積,用皮尺或鋼尺丈量界址邊長及相關尺寸,用幾何圖形法計算出宗地面積,而不測址點坐標和地籍圖。這樣做不利于信息化的管理。
4、圖形數字化
影響數據質量的因素是多方面的,有相當一部分來自于建庫過程中的數字化過程。建庫過程中的數據質量,包括數字化前的預處理,紙張變形、手扶跟蹤數字化精度或掃描數字化的分辨率和矢量化精度。
(1)數字化前的預處理
用于數字化作業的地形圖(工作底圖)一般采用聚酯薄膜圖,其變形一般小于0.2‰。采用紙質圖紙時,圖紙的尺寸隨濕度和溫度的變化而變化,溫度不變的情況下,溫度由0%增至25%,則紙的尺寸可能改變1.6%[6]。因為紙的膨脹率和收縮率不相同,即使溫度回到原來的大小,圖紙也不能恢復原來的尺寸。因此在數字化時要適當的比例因子,通過仿射變換進行幾何糾正,以減小工作底圖變形產生的位置誤差,達到相應的精度。
對不同種類和比例的工作底圖
進行數字化時,應注意它的投影方式是否一致,比例是否匹配。對于不同投影方式應在數字化后及時變換為系統要求的投影方式。對于不同比例應將比例尺和精度記錄到元數據中,以便估記由此可能產生的誤差。
(2)跟蹤數字化
手扶跟蹤數字是一種自動化精度較低的數字化方式,其數字化精度也因操作員及其工作的疲勞程度而異,操作員的勞動強度較高。隨著大幅面掃描儀的成本不斷降低,掃描和矢量化技術不斷完善,這種數字化方式可能成為自動掃描數字化的一種補充。
手扶數字化是從地形圖輸入空間數據的最廣泛采用的輸入方法。把地形圖放置于數字化桌上,用手持設備,跟蹤每一個地圖特征、數字化設備精確量測鼠標的位置,產生數據形式的坐標數據。
影響跟蹤數字化數據質量的因素很多;主要有:數字化底圖中地理要素的寬度、密度和復雜程度對數字化結果的質量有著顯著影響。數字化儀的分辨率和精度對數字化數據質量有著直接的決定性的影響。《地形圖數字化規范》規定,數字化儀的分辨率不能小于每厘米394線(約1000dpi),精度不低于0.127mm(0.005英寸)。常見數字化儀在分辨率方面通常能滿足要求,而在精度方面卻有相當一部分不能達到要求。在選擇數字化儀時要特別注意其精度指標,以滿足LIS工程的需要。數字化操作員的技能與經驗不同而引入的人為因素誤差是不同的,由于操作員視力、操作習慣,熟練程度和疲勞程度的不同,最佳采樣點位值判斷,十字絲與目標點重合程度的判斷會有一定程度的差異,影響數字化的質量。操作方式(如曲線采點方式和采點數目)也會影響數字化數據的質量。
假定各種誤差影響符合誤差傳播規律,手扶跟蹤數字化的綜合精度應按下式求得:[7]
m數=±
其中:m數表示手扶跟蹤數字化的綜合精度;m定表示工作底圖定向誤差,m儀表示數字化儀精度,m人表示人為因素誤差。
(3)、掃描數字化
掃描數字化用高精度掃描儀將圖像等掃描并形成柵格數據文件進行處理,將之轉化矢量圖形數據。規范規定:圖形定位控制點掃描誤差不大于0.1mm,相對于工作底圖,矢量化后的掃描點誤差不大于0.15mm,線劃誤差不大于0.2mm。影響掃描數字化質量的因素除原圖質量外,還包括:掃描精度、定向精度、矢量化精度損失等。
①掃描儀的分辨率和精度
掃描儀的分辨率和精度對掃描數字化質量的影響是至關重要的。因此,要根據具體情況選擇適當的掃描儀。目前,大幅面掃描儀大致有,滾筒式(drum),平板式(flatebed),直進式(directfeed)3種。這些掃描儀能夠輸出一種或多種形式柵格數據文件(二值、灰度和彩色)。
滾筒式掃描儀精度較高價格較貴,能以較高的分辨率掃描AO或更大的圖紙。
平板式掃描儀與滾筒式一樣精度高、價格貴、分辨率很高,但一般幅面不會超過A1幅面。由于平板式掃描儀幅面小,掃描后多需進行拼接,從而增加了工作難度,引入了更多的誤差源。LIS工程一般不選用這種掃描儀。
直接式掃描儀精度較低,價格也較便宜。通常能夠滿足一般LIS工程的需要。
目前,需要的大幅面掃描儀品牌有:CONTEX、VIDER、ANATECH等。
在選擇掃描儀時,應注意其是否采用硬件消藍。光學分辨率代表了掃描儀的分辨率能力,而經銷商往往只是給出插值分辨。同時,應注意掃描儀的歪斜失真,歪斜失真的大小與掃描儀的走紙方式有關。
②柵格數據矢量化的精度損失
在土地信息系統中,柵格數據與矢量數據各具特點與適用性,為了在一個系統中可以兼容這兩種數據,以便有利于進一步分析處理,常常需要實現兩種結構的轉換。
柵格的矢量轉換處理的目的,是為了將柵格數據分析的結果,通過矢量繪圖裝置輸出,或者為了數據壓縮的需要,將大量的面狀柵格數據轉換為由少量數據表示的多邊形邊界,但是主要目的是為了能將自動掃描儀獲取的柵格數據加入矢量形式的數據庫。
在柵格數據矢量的過程中的細化、跟蹤等均可能引入一些誤差。復雜圖形全自動化矢量化效果極差,會產生眾多的交叉線,導致多邊形跟蹤錯誤。對此,應采用交互式矢量化方法。因此在選擇矢量化軟件時不應僅僅關心自動化程度(全自動矢量化軟件價格往往很高)。還要特別注意是否具有以下功能:智能去斑,裁剪,扭曲較正,比例控制,水平校正,光柵編輯和交互式矢量化等。
③掃描數字化方法誤差
掃描數字化的幾何分辨率是掃描數字化方法誤差中最重要的誤差源,減小這種誤差的唯一方法就是提高掃描儀的幾何分辨率。但是,隨著分辨率的提高,柵格數據量以平方級速度增長。這往往造成計算機存儲資源耗盡,數據處理時間平方級延長。以300dpi(約每mm12個點)的分辨率掃描時,獨立點間距離的相對精度為1.4/1000左右。全自動矢量化細化過程所產生的點位誤差為1~2個像素點,而交互跟蹤矢量化最大點位誤差可以控制在一個像素點。按300dpi計,每個像素點相當于圖上0.01mm。掃描數字化綜合精度可按下式計算:
M掃=±
其中:M掃表示掃描數字化的綜合精度;M定表示底圖定向誤差;M儀表示掃描儀精度;M矢表示矢量化誤差。這里,M定取±0.12mm,按300dpi計算M儀取±0.09mm,M矢取±0.1mm。則M掃=±0.180[8]。
四、數據處理質量
土地信息系統的數據庫建立后,其中已經包含了數據源和數據庫建庫所引入的誤差。數據庫中的多源數據,經過系統的各種分析處理后,在形成新的數據和最后產品的過程中還會產生新的數據質量問題。這些問題包括:幾何改正,坐標變換和比例變換,幾何數據的編輯、屬性數據的編輯、空間分析,數據格式的轉換等。
1、空間分析
空間分析是對分析空間數據的技術的通稱。從客觀上區分,可歸納為:空間的圖形數據的拓撲運算;非空間屬性數據的運算;空間和非空間屬性的聯合運算等[9]。空間分析賴以進行的基礎是空間數據庫,土地信息系統的空間數據分析,是實現土地資源信息系統的實際運用的重點途徑。
空間分析中的疊加分析是土地信息系統中十分常用的一種分析方法,是用戶經常用以提取數據的手段之一。通過同一地區不同內容的多幅地圖的疊加組合,產生新的圖形和屬性信息。在這個過程中往往產生拓撲匹配、位置和屬性方面的數據質量問題。由于疊加時多邊形的邊界可能不完全重合,從而產生若干無意義多邊形。對這些無意義多邊形進行處理的結果往往會改變界線的位置,疊加后形成的新的多邊形的屬性值也可能存在由于屬性組合帶來的誤差。
2、坐標變換
土地信息系統數據來源較多,各種數據輸入信息系統應便于系統對數據進行圖形顯示,疊加查詢,統計分析處理。LIS要實現這些功能,一個首要和基本的前提就是各種不同來源的數據在系統內必須在一致的地形圖坐標系下。但是,在實際的數據采集過程中,大量的數據坐標并不一定屬于系統用戶所要求的坐標系,原始數據為一種坐標系,系統要求的數據為另一種地圖坐標系,有的數據坐標根本沒有地理意義,對此情況,必須提供從一種地圖坐標系到另一中坐標系的坐標變換。
在具體的操作過程中,有可能產生新的誤差。在不同比例尺下對坐標數據的重新設立產生誤差,進行投影變換和/或基準面變換時產生的誤差。生產實踐中為提高數據質量,確保系統的數據精度和可靠性,通常用仿射變換和相似變換等模型來進行數據處理,以減小或消除誤差。
坐標變換的實質是建立兩個平面點之間的一一對應關系,現有一般GIS(LIS是GIS的專題)軟件大都提供了以下兩種模型實現坐標變換。
一是仿射變換:仿射變換也稱六參數變換,其變換公式為:[10]
x´=Ax+By+C(Ⅰ)
y´=Dx+Ey+F(Ⅱ)
其中,x´、y´為地圖輸出坐標系中的坐標點對;x、y為輸入坐標中的坐標點時;A,B,C,D,E,F為方程參數。參數在坐標系空間上
的幾何意義為:A和A分別確定點(x,y)在輸出坐標中x方面和y方向上的縮放尺度。B和D確定旋轉角度,C和F分別確定在x方向和y方向上的水平移尺寸。
二是相似變換:當式(Ⅰ)、(Ⅱ)中的參數滿足條件A=E=Scos@,B=-D=Ssin@時,則得到四參數的相似變換公式:
x´=Ax+By+B(Ⅲ)
y´=-Bx+Ay+D(Ⅳ)
式中,x´、y´為輸出地圖坐標系中的坐標點對;x、y為輸入地圖坐標中的坐標點對;A、B、C、D為方程參數,相似變換實質上也是坐標系間的平移,旋轉和縮放尺度的變換,式中C和D分別為坐標在x軸和y軸上的平移大小,為縮放比例,@=arctg(B/A)為旋轉角度。
為了求出以上公式中的參數,建立兩種坐標之間的仿射(或相似)轉換關系,至少需要三個(或兩個)已知的控制點坐標。而實際上,應選擇多于三個(或兩個)控制點,方能按照最小二乘法原理進行平差,得出系數值,代入上述方程即建立輸入和輸出坐標系之間的仿射(或相似)變換數學模型。
可以看出,仿射變換和相似變換都為線性函數變換模型,可實現對原圖形的平移、旋轉和縮放,相比較而言,相似變換不能進行x軸、y軸不均勻縮放的變換,而仿射變換能保證更高的數據精度。
3、數據變換
(1)CAD向GIS的轉換
目前我國土地管理中存在一個較為普遍的問題是土地信息系統的構建與圖形數據采集較少作用一個整體來通盤考慮,地籍測繪大大超前于信息管理系統構建。中小城市這種問題表現得更為突出。為滿足土地確權發證,土地定級估價等需要,1995年前測繪的地籍圖等圖件因受技術條件的限制絕大部分是采用傳統白紙測圖方法完成的。隨著計算機技術的發展和在測繪工作中的普及應用,1995年之后數字地圖逐漸取代傳統測繪。但一個不容忽視的事實是,絕大多數測繪圖軟件是在AUTOCAD上進行二次開發完成的。有些甚至是采用低版本的CAD,有些測繪圖軟件雖然測的是數字圖,但只有非編碼的圖形文件,不保留信息,或者圖形編輯以后,返不成信息。這種數字圖說到底僅僅是從傳統的白紙圖過渡到計算機驅動繪制的白紙圖。本質上與傳統測繪沒有什么區別。有些雖然采用了較高版本的CAD基礎軟件二次開發成數字測圖軟件并采用了數字編碼技術,但由于較少考慮CAD與GIS的數據共享問題(土地信息系統屬于專題GIS)。在著手考慮構建土地信息系統時,遇到的突出問題則是如何充分,有效利用已有數字信息資料,并確保數據轉換質量。
對于傳統模擬圖或難以返成信息的所謂數字圖只能采用原圖數字化,形成數字信息后方可加以利用,但其精度丟失是不可避免的。
對于采用了編碼技術,也能返成信息的數字圖,其數字信息可以通過數據轉換來實現數據共享,但由于CAD與GIS圖形數據之間其數據格式,數據內容甚至數據概念都有很大差異,數據轉換時應注意以下三個方面:[11]①數據格式轉換。不同的軟件有不同的數據格式,有些可以通過通用數據格式如DXF實現轉換,但轉換過程中的數據丟失也的確令人煩惱。②數據元素轉換。CAD與GIS兩者之間的圖形元素不是一一對應關系,CAD圖形中的圖形元素種類要比GIS圖形文件中的圖形元素種類多,GIS中只有點、線、面三類基本圖形元素,而CAD中包括有點、線、面、注記、矩形等多種圖形元素,在具體轉換中,CAD的圖形元素哪些轉換成GIS的點,哪些元素轉換面面,什么元素需要轉換成GIS的屬性數據,什么元素則不需要轉換到GIS中去等。CAD與GIS圖形元素之間的對應關系,都需要認真細致地加以技術處理,使空間數據和屬性數據在輸入系統后正確地連接起來。③拓撲關系的形成。因為CAD的圖形元素之間沒有拓撲關系,實現CAD向GIS數據轉換的一個重要內容就是要將轉換后的圖形數據按照一定的技術要求經過編輯,在GIS環境下建立幾何元素的拓撲關系。
在實際轉換中,還會出現許多意想不到的技術問題,會影響數據轉換質量,有待進一步解決。
(2)矢量數據結構向柵格數據結構的轉換
土地信息系統的建設中,許多數據如行政邊界,交通干線,土地利用類型、土壤類型等都是用矢量數字化的方法輸入計算機或以矢量的方式存在計算機中,表現為點、線、多邊形數據。然而,矢量數據直接用于多種數據的復合分析等處理將比較復雜,特別是不同數據要在位置上一一配準,尋找交點并進行分析。相比之下利用柵格數據模式進行處理則容易得多。加之土地覆蓋的疊置復合分析更需要把其從矢量數據的形式轉變為柵格數據的形式。
矢量數據的基本坐標是直角坐標(x,y),其坐標原點一般取圖的左下角。網格數據的基本坐標是行和列(i,j),其坐標原點一般取圖的左上角。兩種數據變換時,令直角坐標x和y分別與行與列平行。由于矢量數據的基本要素是點、線、面,因而只要實現點、線、面的轉換,各種線劃圖形的變換問題基本上都可以解決[12]。
矢量數據變成柵格數據的原理與方法并不困難,但由于矢量數據的記錄方式各不相同,也會產生一些問題。如多邊形之間公共邊原來只有一條交界線,轉變成網格后成為有一定寬度的界線,產生了一定的近似性。特別是幾條線交叉處,一個網格元素中包括了相鄰的幾種類別,轉換時只能用其中的一種類別作為交叉點所在的元素的類別,這種誤差應在允許的范圍以內。而減小網格尺寸,雖提高了精度,但大大提高了數據的冗余量。
柵格數據結構需要大量的計算機內存來存貯和處理數據,才能達到與矢量數據結構相同的空間分辨率,而矢量結構在某些特定形式的處理中,如象多邊形疊置,空間均值處理等尚有大量的技術問題來解決。值得注意的是,無論采用哪種轉換方法,轉換的結果都會不同程度地引起原始信息的損失。
通過矢量數字化或掃描數字化所獲取的原始空間數據,都不能避免地存在錯誤或誤差。屬性數據在建庫時,也難免會存在錯誤。諸如:空間數據的不完整或重復,空間點、線、面數據的丟失或重復,區域中心點的遺漏,柵格數據矢量化時引起的斷線等,空間數據位置的不準確、線段過長或過短,線段的斷裂、相鄰多邊形結點的不重合及空間數據的變形等。因此,必須對圖形數據和屬性數據進行一定的編輯。
土地信息系統數據編輯是消耗時間的交互處理工作,對空間數據不完整或位置的誤差,主要是利用LIS圖形編輯功能,如刪除(目標、屬性、坐標),修改(平移、拷貝、連接、分裂、合并、裝飾)、插入等進行處理。對空間數據比例尺的不準確和變形,可以通過比例尺變換和糾正來處理。
在數據的編輯過程中,由可能產生一些新的問題。如:線段的相關與延伸出現的問題,圖形的平移與旋轉出現的問題,刪除“細部多邊形”時產生的誤差,數值計算與變化的誤差;文件的合并以及形成新文件的問題;屬性數據的重新定義和更新的問題。有的問題時可能避免的,有的問題則無法避免。因此,必須進行檢核。通過耐心細致的檢查,主要誤差都能從數據中尋找出來,并有效消除誤差。一般采用疊合比較法,目視檢查法和邏輯法。
疊合比較法是空間數字化正確與否的最佳檢核方法,按與原圖相同的比例尺把數字化的內容繪在透明材料上,此后與原圖疊合在一起,在透光桌上仔細的觀察和比較。一般。對于空間數據的比例尺不準確和空間數據的變形馬上就可以觀察出來,對于空間數據的位置不完整和不準確則須把遺漏、位置錯誤的地方明顯地標注出來。目視檢查指在屏幕上用目視檢查的方法,檢查一些明顯的數字化誤差與錯誤,包括線段過長或過短,多邊形的重疊和裂口、線段的斷裂等。
5、由計算機引起的問題
在計算機中,數據是由一定字長的編輯數碼表示的,由計算機字長可能引起一種誤差。這種誤差出現在各種數值運算和模型分析中,由這種誤差引起的問題很多[13],例如LIS空間數據庫中整數編碼對面積和周長計算的影響,比例尺變換和旋轉變換對拓撲關系的影響等。削弱誤差影響的主要方法有:改變數據在計算機中的表示方式,采用合適的算法等。
除了數據處理精度外,數據存儲精度也與計算機字長有關。16位的計算機在存儲低分辨率的柵格圖像時不會出現問題,但存儲高精度的控制點坐標或點位精度要求高的地理數據時,則不能勝任。
五、數據應用質量
土地信息數據在使用過程中往往出現一些質量問題,這些問題包括數據的完備程度,時間的有效性,拓撲關系的正確等。
1、數據的完備程度
數據的完備程度指地理數據在范圍、內容、及結構方面滿足所有要求的完整程度。包括數據范圍、空間實體類型、空間關系分類、屬性特征分類等方面的完整性。
一般來說,空間范圍越大,數據的完整性就越差。在土地信息系統的建庫過程中,數據不完整最簡單的例子是缺少數據。如計算機從GPS接收機傳輸位置數據時,由于軟件受干擾或其它因素的緣故,只記錄下經度而丟失緯度,以至造成數據不完整。另外由于GPS接收機無法收到四顆或更多的衛星信號而無法計算高程數據也會造成數據的不完整。又如某個應用項目需要1:5000的基礎底圖,但現在的地圖數據只覆蓋項目區的一部分,底圖數據便不完整。
在土地信息系統底建庫中,涉及大量的地籍檔案。地籍檔案來源于土管機關的地籍部門,數量大、形式多、浩繁、零亂,隨著時間地推移,以及人為和自然的各種因素地影響,有可能遭到損壞。如檔案老化,書寫材料低劣、地籍檔案變到污染,變色、蟲蛀等現象,進而影響到整個系統的質量。
2、數據的現勢性
數據的現勢指數據反映客觀現象目前狀況的程度。數據的現勢差,反映的客觀現象就可能不準確。不同現象的變化頻率是不同的。如地形的變化一般來說比人類建設要緩慢,地形可能會由于山崩、雪崩、泥石流、人工挖掘及填海等原因而在局部區域改變。但由于地圖制作周期較長,局部的變化往往不能及時地反映在地形圖上,對那些變化較快的地區,地形圖就失去了現勢性。城市地區土地覆蓋變化較快,這類地區土地覆蓋圖的現勢性就比發展較慢的農村地區會差些。地形圖上記錄著所用航空像片獲得的年代。若又用其他數據進行過修改(一般是較新的航空像片),也應記錄于上。
在土地信息系統建庫中,要求地籍信息和地籍圖必須具有現勢性。地籍信息變更比較頻繁,如土地利用類型,權屬或宗地的重劃,合并等。由于受自然因素和人為作用的影響,土地資源的數量、質量、分布和使用情況都處在經常變化之中。基于這一特點,土地管
理部門提供的數據很難保證現勢性,這也是影響數據質量的一個重要方面。
3、拓撲關系
在LIS中,為了真實地反映地理實體,不僅要包括實體的位置、形狀、大小和屬性,還包括必須反映實體之間的相互關系,這些關系就是指它們之間的鄰接關系,關聯關系和包含關系,拓撲關系。拓撲關系的核心是建立點、線、面的關聯關系。通常有以下幾種空間關系:點-點關系、點-線關系、點-面關系、線-線關系、線-面關系、面-面關系。空間數據的拓撲關系,對數據處理和空間分析具有非常重要的意義[14]。
利用拓撲關系,可以確定一種空間實體相對于另一種空間實體的位置關系。利用拓撲關系,可以確定某縣有多少耕地,分析土地利用類型及對土地適宜性做出評價等。
在拓撲關系的建立中,拓撲過程中伴隨有數據所表達的空間特征的位置坐標的變化,拓撲關系的不正確等情況,導致空間分析的結果錯誤,給土地管理決策帶來一定的影響。
六、結論
數據是LIS最基本和最重要的組成部分,同時也是一個LIS項目中投資比重最大的一個部分。數據質量的好壞,會直接影響到LIS的系統功能和應用質量問題的三個方面(數據源的質量問題、數據處理質量問題、數據應用質量問題)著手,對LIS的數據質量問題進行了一定的歸納總結和初步的探討。眾所周知,LIS的數據質量是影響LIS的一個瓶頸環節,LIS數據量大、數據種類多、數據結構復雜。因此,在LIS的建設過程中,如何在數據采集與建庫中實施質量控制,保證數據質量對土地信息系統建設來說顯得尤為關鍵。
七、總結與體會
畢業論文的撰寫是一次再學習和鍛煉的機會,是對所學知識的一個融會貫通的過程。通過畢業論文的撰寫,我對所學的知識有了更深層次領悟和掌握,對自己所學的土地管理專業有了一個整體認識。畢業論文不僅是對所學知識的總結,也是運用所學知識探求新知的方法、手段。既是一次再學習的過程,也是一次深入學習的機會。同時,畢業論文寫作,為今后的學習工作奠定了一定的基礎。通過畢業論文的寫作,我真正懂得理論聯系實際的重要性。在撰寫畢業論文中,我運用所掌握的基本知識、方法和技能,研究探討了土地信息系統建立過程中數據質量的有關問題。通過畢業論文的撰寫,我進一步完善了自己的知識結構,學習了更多的知識。不僅如此,我對土地信息系統數據質量控制措施與方法方面有了更進一步的認識。
通過畢業論文的寫作,不僅強化了我的學習素質、研究素質和創業素質,而且培養了我的創新意識,激發了我探求新知的欲望。認真寫作畢業論文,不僅能進一步鞏固所學的理論知識,而且還能進一步提高自己的各項基本技能,實踐能力和解決問題的能力。
八、謝辭
在論文的寫作過程中,玉文龍老師給予了很大的支持和幫助,為論文的寫作提出了許多寶貴性的意見和建議;在他的指導下,這篇論文得以順利完成。在資料的搜集過程中,圖書館工作人員為我們提供了很大幫助,本組同學也給予了很多支持,在此表示衷心感謝。
參考文獻
[1]錢樂祥,余明全.土地信息系統的幾個基本問題.測繪通報,1999(10).
[2]張超等.地理信息系統.北京:高等教育出版社,1995.
[3]閻正等.城市地理信息系統標準化指南.北京:科學出版社,1998.
[4]范愛民,景海濤.地圖數字化質量問題.測繪通報,2000(4).
[5]嚴星,林增杰.地籍管理.北京:中國人民大學出版社,1999
[6]-[7]郝向陽等.地圖掃描數字化點位精度分析.測繪學報,1995,25(1).
[8]毛鋒等.地理信息系統建庫技術及應用.北京:科學出版社,1999.
[9]湯國安,趙牡丹.地理信息系統.北京:科學出版社,2000.
[10]徐建剛.城市規劃信息技術開發及應用.南京:南京大學出版社,2000.
[11]司少先.地籍信息系統源數據質量問題探討.測繪通報,1999(4).
[12]邊馥苓主編.GIS原理與方法.北京:測繪出版社,1996.
1、引言
隨著測繪新技術的飛速發展,土木工程專業對測繪技術的要求與依賴日益提高:利用數字化地形圖進行城市規劃、路線設計、建立地面三維模型、工程量計算;利用全站儀、GPS實現各種建筑物的快速定位和工程變形測量等。其中被廣泛使用的GPS系統是由由空間星座、地面監控和用戶設備三大部分組成。GPS測量就是通過利用GPS接收機接收GPS衛星發射的信號來確定出地面點的三維位置的一種新型測量方法,用它幾乎可以完成所有的測量工作。因此探索在新形勢下如何建立具有GPS控制網的測量實驗實習基地,有著十分重要的現實意義。
2、建立校園GPS實驗網的必要性
我校測量實驗室于2006年搬遷至新校區,測量實驗和集中實習也都在新校區進行。同時,也開始在校園內進行控制點的布設,能夠滿足基于邊控制邊測量方法的大比例尺數字化測圖的需要,也能夠滿足施工放線引測三維坐標的要求;實習期間采用獨立坐標系、獨立高程系進行導線首級控制,由學生利用經緯儀測距導線技術建立臨時控制網。但是隨著招生人數的擴大,新專業的開設,出現了測量實驗課課時的增多且實習時間相對集中的局面。已有的測量控制網無論從數量上、 精度上還是使用的方便程度上都越來越難以滿足學生的實習要求。因此,有必要著手建立并優化新校區的測量控制網,以滿足土木工程、工程管理、交通工程、環境化學工程、給排水工程等專業對于測量實驗和測量集中實習的需求。
3、建立校園GPS網的意義
隨著科技的發展和各學科相互聯系的加強,GPS技術已被廣泛應用到各個領域,如環境監測部門的數據采集、地理信息系統的建立、地質災害的預報、監測及防范等,因此,有必要建立校園GPS實驗網,為教學和科研提供基礎資料。GPS網的設計時無需考慮測角、邊角同測和測邊網等的傳統要求、不需要考慮布設什么樣的網形、考慮圖形強度,幾乎可以設定在所需要的任何位置處。所以GPS網的設計是非常靈活的,利用GPS定位技術建立GPS網,具有全天候、對通視條件無要求、相對精度高、操作簡單、高效率、作業靈活便捷等特點。不僅工作量小,而且可以節省大量的人力、物力和財力。當邊長
4、GPS網的布設原則和GPS點的選擇
GPS布網主要包括網形設計和觀測計劃制定,構成優化的解算圖形,同時應考慮提高成果可靠性。應遵循保證測量精度、測繪速度快、節省費用的原則。同時,GPS網應根據測量任務的要求、測區自然狀況、交通條件等進行靈活設計,防止粗差。根據《衛星定位城市測量規范CJJ/T73-2010》的規定來確定相對應邊長和精度。布網時要重點考慮的是合理利用原始控制點, 將已知點和未知點以邊連、點連混合方式交叉構網,使得GPS網具有較強的幾何強度,常見的有環形網、三角形網、星形網等。特別是作為平差的已知點、校核點的利用,分析其在網內的位置和本身精度對平差精度的影響,最終設計出最優的網形方案,合理恰當的技術設計能有效地保證觀測成果的可靠性和滿足要求。
GPS點的選擇按照國家測繪局頒發的《全球定位系統(GPS)測量規范》(CH 2001-92)要求,應考慮下列原則:
a. 觀測站應遠離大功率的無線電發射臺和高壓輸電線,接收機天線與其距離一般不得小于200m 。
b. 觀測站附近不應有大面積的水域或對電磁波反射(或吸收)強烈的物體,遠離雷達站、電臺、微波中繼站等。
c. 觀測站的設立應便于用其他測量方法聯測。
d. 觀測站應設立在視野開闊且周圍障礙物的高度角不小于15°的地方。
e. GPS網點應考慮與水準點相重合,或在網中布設一定密度的水準聯測點。
f . GPS網點應盡量與原有地面控制網點相重合,重合點在網中應分布均勻。
根據校園實際地理情況,GPS點最好選擇在高層建筑物上,可保證點位穩定、視野開闊,施測布網時盡量使起算點間形成異步環,其它各點根據實際情況而定,適當減少GPS網中的異步環數量,提高工作效率:在起算點和需要設置參考站的過渡點構成異步環后,其它測點根據情況可不必形成異步環,但要保證觀測條件良好,基線解算合格。
5、擬建GPS網的實測內容和功能
根據教學大綱對實驗實習教學的內容要求和時數安排,在有限的時間和資源,選擇有代表性的工程環節和有鮮明的模擬性的工程實例,作為GPS實驗實習的教學內容是完全有必要的。充分利用現有的校園環境,使實驗實習的整個過程盡可能的符合測繪工程生產實際,并滿足GPS實踐教學的要求。使學生在有限的實習時間內能夠順利完成實習任務,讓測量實習轉變為完整意義上的測繪工程實際工作的模仿,最終達到學生在校內就可以獲得良好的實踐效果。
首先是對GPS技術的掌握,其主要包括GPS 業內數據處理和GPS 基線網實測兩大部分。讓學生通過以動態、靜態 GPS的方式觀測并建立基線網,對測量成果進行檢驗的基礎上能夠熟練的進行工程放樣。在校內實訓基地中埋設一定數量的四等三角點,以此將其作為GPS 控制網的起算數據,進行外業設計以及圖形結構設計。學生通過 GPS 技術的應用在合理布網的基礎上,使控制點能夠具有更為便捷、 全局特征分布。在實際教學的過程中, 教師也可以根據課程的內容以及需求,固定控制點,對導線進行加密測量,方便對學生測量數據所具有的精確性以及真實性進行檢查,以此進一步的提升了實習的效果和質量。
其次根據校園的實際地理地貌特征,模擬出一些仿真效果好的實習場地,利用建筑物、道路、橋梁、渠道、河道、堤壩等,以此來更好的滿足給排水工程、建筑工程以及交通工程學生的實習要求,增強了基地的多樣性。例如交通工程專業的學生就可以在校內完成道路選線、曲線測設、道路中線放樣、縱橫斷面測量等工作。
最后對數據的采集和處理,內容包括 GIS 空間數據采集與處理、數據的管理與入庫、 GIS 工程實踐訓練以及相關的科研活動等等。結合數字化測圖技術,實現測繪外業數據采集與內業處理的一體化,提升專業學生數字成圖、數據處理的能力。同時可以采取校企聯合的方式,不僅對教師教學和學生學習方面提供幫助,還可以為企業員工的崗位培訓和繼續教育提供良好的平臺,實現校企共同發展的良性循環。
6、結語
具有GPS控制網的測量實習基地的建成,不只是能提高了工程測量課的教學效果,優化學校的原有教學條件,更可以拓寬土木工程專業學生從事測量工作的范圍,在提升學校社會地位、學生的就業率和就業質量方面都會起到一定的作用。同時使學生通過先進技術、真實環境的接觸,提高學習的積極性、實際動手能力和技術水平。
參考文獻
1、黃聲享.陳晶晶.李夏至. GPS測量實踐教學的嘗試 [期刊論文] - 實驗室研究與探索 2010(3)
論文摘要:數字測圖是在測量工作中利用電子計算機技術將野外數據采集系統與內業機助制圖系統相結合,其目標是實現信息采集處理的數字化、自動化、信息化。數字測圖可以縮短作業時間,減輕勞動強度,提高成果精度。數字測圖系統主要由數據輸入、數據處理和數據輸出3部分組成,數字測圖作業模式中測記式數字測圖應用最為廣泛。大比例尺數字測圖正以其測圖精度高,成圖速度快等優勢逐步的取代傳統的,以平板儀為主的模擬測圖。與傳統的模擬測圖相比,數字測圖的質量控制關鍵點更多、內容與方法更為復雜。GPS 新技術的出現,可以高精度并快速地測定各級控制點的坐標,在地形測量中已得到廣泛地應用。本文介紹了GPS(RTK) 配合全站儀的作業流程, 簡要闡明了其在地形測量中的應用。在利用實測數據成圖的過程中, 解決一些常見的問題, 并給出解決的辦法及依據, 同時給出一些有益的結論, 以適應實際使用的需要。
ABSTRACT:The digitized mapping technique is to combine the field data collection system with the computer assisted mapping system in surveys by computer technology.It aims to realize the information collected and processed digitally and automaticaity.The digitized mapping technique can cut short the working time,lighten the labor intensity and enhance the precision of the productions.The system consists of three parts,such as data input,data processing and data output.the survey-record digitized mapping technique is widely used in the digitized mapping working pattern.For its superiority over traditional plane-table mapping in accuracy and efficiency,the large scale digital mapping is becoming more and more pared with traditional analogue mapping,digital mapping has more quality control pivotai points,and its contents and methods are more complex.With the appearance of new technology GPS ,the coordinate of different levels controlling points may be surveyed in high precision and it has been applied widely in topographic survey.The operation process of GPS(RTK) electronic tachometer is introduced and its application in topographic survey is briefly illustrated. Solutions to some problems usually occur in the mapping process using actually measured data and some helpful conclusions are given for practical use.
Key words : RTK; electronic tachometer ; digital mapping ; CASS5.1;topographic survey;GPS
第1章 緒 論
1.1 前言
目前在我國,獲取數字地圖的主要方法有三種:原圖數字化,航測數字成圖,地面數字測圖[1]。但不管那種方法,其主要作業過程均為三個步驟:數據采集,數據處理及地形圖的數據輸出(打印圖紙、提供軟盤等)。這里我們主要講述一下地面數字化。
在沒有合乎要求的大比例尺地圖的地區或該地區測繪經費比充足,可直接采用地面數字測圖的方法,該方法也稱為內外業一體化數字測圖,是我國目前個測繪單位用得最多的數字測圖方法。采用該方法所得到的數字地圖的特點是精度高,只要采取一定的措施,重要地物相對于鄰近的控制點的精度控制在5cm內是可以做到的。但它所耗費的人力、物力與財力也是比較大的。
隨著測繪科學技術的發展,傳統的測圖方法正逐步被不斷涌現的新儀器、新設備、新技術、新方法所取代。GPS - RTK(以下簡稱RTK) 與全站儀聯合進行數字化測繪地形圖就是一種行之有效的新方法。
RTK與全站儀聯合測繪地形圖,可以優劣互補。如果僅用全站儀進行數字化測圖,就必須建立圖根控制網,這樣須投入大量的時間、人力、財力;如僅用RTK測圖,可以省去建立圖根控制這個中間環節,節省大量的時間、人力和財力,同時還可以全天侯地觀測。由于衛星的截止高度角必須大于13°- 15°,它在遇到高大建筑物或在樹下時,就很難接收到衛星和無線電信號,也就無法進行測量。如果用RTK與全站儀聯合測圖,上述弊端就可以克服。即在進行地形測量時,空曠地區的地形、地物用RTK測之;村莊、城市內的建筑物、構筑物用RTK實時給出圖根點的三維坐標,然后用全站儀測之。這樣可以大大加快測量速度,提高工作效率。
隨著GPS 定位精度的提高、硬件性能的改善, GPS 得到越來越廣泛的應用。同時,全站儀也因其數據采集自動化程度高、大大釋放勞動力等優勢,成為勘測、設計、施工和管理不可或缺的測量工具。但隨著工程質量要求的不斷提高,測量用戶已不再局限于只使用GPS 或全站儀中的一種,在實際測量工作中,同樣一個工程中GPS 的測量成果常為全站儀所用,全站儀測量值又常作為檢校GPS 作業的依據。用GPS 完成控制比用常規儀器要快得多。它不要站間通視,也無需龐大的作業隊伍,精度高、作業快、費用省、應用靈活。一些先進的接收機和天線技術把外業觀測時間壓縮到最短的同時,仍能獲得最優的數據,在靈敏度、可靠性、抗干擾能力方面都有優異的表現。靜態、快速靜態通過載波相位差分可以達到很高的精度(10-6D~10-8D) 。R T K 技術能實時提供觀測點的三維坐標,并達到厘米級的精度。它的普及極大地拓展了GPS 的使用空間,使GPS 從只能做控制測量的局面中擺脫出來,而開始廣泛運用于工程測量。現在商用R T K 接收機可實現20 Hz 高速獨立采樣與輸出,整周未知數初始化時間僅需8 S , 并提供獨立檢核,內置鋰電池可支持1 個工作日連續作業。全站儀是一種兼有電子測距、電子測角、計算和數據自動記錄及傳輸功能的自動化、數字化的三維坐標測量與定位系統。面對多層次的需求,各種精度等級、各種功能類型的儀器也紛紛面世。尤其是以無棱鏡測量、自動目標識別、自動跟蹤等代表新技術潮流的功能將使工作得以更高效、精確地完成。如今,已被廣泛應用于控制測量、地形測量、地籍與房產測量、施工放樣、工業測量及近海定位等方面。隨著電子全站儀、GPS(RTK)及電子計算機的普及,及它們在測量儀器中的比例逐漸增大,它們在數字地形圖、地籍圖的應用也在日趨廣泛。地形圖的成圖方法正在逐步的由傳統的白紙法成圖像數字測圖方向發展。特別是我國的東部沿海發達地區,數字測圖幾乎占據了大部分的地形圖測繪市場。在地形測量中, 傳統的方法是經緯儀配合小平板儀的方法, 在小平板儀上進行展點, 再通過手搖數字化儀得到數字化圖, 由于受到人為操作誤差的影響, 誤差可達到0.12 mm 以上, 對大比例尺的地形圖的精度影響比較大。隨著GPS(RTK)系統的不斷改進, 已經達到了比較滿意的精度要求, 可以滿足常規測量的要求, 尤其對于開闊的地段(主要是田野、公路、河流、溝、渠、塘等) 直接采用全球衛星定位系統中的實時動態定位(RTK) 測量模式進行全數字野外數據采集。對于樹木較多或房屋密集的村莊等, 采用RTK 測定圖根點, 通過全站儀的采集碎部點。
基于此, 我們在實踐中嘗試利用RTK 配合全站儀進行野外數據采集, 然后在CASS5.1 環境下進行數字化成圖, 結果顯示該方案是可行的。但是受到儀器數量的限制,有些學生對全站儀和GPS(RTK) 在數字成圖中使用的機會較少,甚至對此只是一般性的了解。所以通過本課題的完成,能夠使這些學生掌握好全站儀與GPS(RTK)集和數字成圖,為今后承擔測圖工程奠定堅實基礎。
1.2 本章小結
綜上所述,采用GPS(RTK)與全站儀聯合進行數字化測圖,它不僅可以減少作業人員和作業工序,而且可以提高采集數據的速度和質量,從而有效地提高了工作效率。因此,它是一種行之有效的測圖方法。
下面就數字成圖的幾個方面談一些個人體會。但其中定有不符僅及謬誤之處,萬望各位老師,專家指出,提出意見并給予指導。
第2章 儀器及軟件
2.1 GPS(RTK)簡介、系統組成及其基本原理[2]
2.1.1 GPS(RTK) 簡介
RTK(Real Time Kinematic) 實時動態測量系統,它是集計算機技術、數字通訊技術、無線電技術和GPS 測量定位技術為一體的組合系統;它是GPS 測量技術發展中的一個新突破。RTK 定位精度高,可以全天侯作業, 每個點的誤差均為不累積的隨機偶然誤差。
實時動態測量的基本思路是: 在基準站安設一臺GPS 接收機,對所有可見GPS 衛星進行連續的觀測,并將觀測數據通過無線電傳輸設備實時地發送給用戶觀測站(流動站); 在流動站上, GPS 接收機在接收衛星信號的同時,通過無線電接收設備,接收基準站傳輸的觀測數據,然后根據相對定位的原理實時地計算并顯示出流動站的三維坐標及精度。
2.1.2 GPS(RTK) 系統的組成
GPS(RTK) 系統由基準站、若干個流動站及無線電通訊系統三部分組成。基準站包括GPS 接收機、GPS 天線、無線電通訊發射系統、供GPS 接收機和無線電臺使用的電源(汽車用12 伏蓄電瓶) 及基準站控制器等部分。流動站由以下幾個部分組成: GPS 接收機、GPS 天線、無線電通訊接聽系統、供GPS 接收機和無線電使用的電源及流動站控制器等部分。用框圖表示參見圖2.1:
圖2.1 RTK-GPS 系統結構圖
2.1.3 GPS(RTK) 的基本原理
GPS 系統包括三大部分:地面監控部分、空間衛星部分、用戶接收部分,各部分均有各自獨立的功能和作用,同時又相互配合形成一個有機整體系統。對于靜態GPS 測量系統, GPS 系統需要二臺或二臺以上接收機進行同步觀測,記錄的數據用軟件進行事后處理可得到兩測站間的精密WGS -84 坐標系統的基線向量,經過平差、坐標轉換等工作,才能求得未知的三維坐標。現場無法求得結果,不具備實時性。RTK 實時相對定位原理如圖2.2 所示:
圖2.2 RTK 實時相對定位原理
圖2.3 GPS(RTK)數據流程如圖
基準站把接收道的所有衛星信息(包括偽距和載波相位觀測值)和基準站的一些信息(如基站坐標天線高等) 都通過無線電通訊系統傳遞到流動站,流動站在接收衛星數據的同時也接受基準站傳遞的衛星數據。流動站完成初始化后,把接收到的基準站信息傳送到控制器內并將基準站的載波觀測信號進行差分處理,即可實時求得未知點的坐標。數據流程如圖2.3 所示:
2.2 全站儀簡介、系統組成及其基本原理
2.2.1 全站儀的分類
八十年代末、九十年代初,人們根據電子測角系統和電子測距系統的發展不平衡,將全站儀分成兩大類,即積木式和整體式。
積木式(Modular),也稱組合式,它是指電子經緯儀和測距儀既可分離游客組合。用戶可以根據實際工作的要求,選擇測角、測距設備進行組合。
1. 粗瞄器
2. 內裝倒向光裝置(選件)
3. 垂直微動螺旋
4. 電池
5. GEB111電池盒墊塊
6. 電池盒
7. 目鏡
8. 調焦環
9. 螺絲固定的可拆卸儀器提把
10. RS232串行接口
11. 腳螺旋
12. 望遠鏡物鏡
13. 顯示屏
14. 鍵盤
15. 圓水準器
16. 電源開關
17. 熱健
18. 水平為動螺旋
圖2.4 萊卡全站儀的重要部件圖
整體式(Integrated),也稱集成式,它是指電子經緯儀和測距儀做成一個整體,無法分離。
九十年代以來,基本上都發展為整體式全站儀。隨著計算機技術的不斷發展與應用以及用戶的特殊要求與其它工業技術的應用,全站儀出現了一個新的發展時期,出現了帶內存、防水型、防爆型、電腦型等等的全站儀,使得全站儀這一最常規的測量儀器越來越能滿足各項測繪工作的需求,發揮更大的作用。
2.2.2 全站儀簡介、系統組成
此次論文實地操作部分主要使用的是萊卡TC405型全站儀。其簡介、操作說明及組成部分的詳細內容可參考其使用說明書[3],再這里就不做贅述了。其重要部件如圖2.4:
2.2.3 全站儀的基本原理與功能
全站儀是一個由測距儀、電子經緯儀、電子補償器、微處理機組合的一個整體。測量功能可分為基本測量功能和程序測量功能。基本測量功能包括電子測距、電子測角( 水平角、垂直角); 程序測量功能包括水平距離和高差的切換顯示、三維坐標測量、對邊測量、放樣測量、偏心測量、后方交會測量、面積計算等。特別注意的是只要開機,電子測角系統即開始工作并實時顯示觀測數據;其它測量功能只是測距及數據處理。它可以同時測量空間目標的距離和角度數據,直接得到三維坐標數據。全站儀測圖的基本流程如圖2.5:
圖2.5 全站儀測圖的基本流程
2.3 CASS軟件的介紹[4]
2.3.1 測繪軟件的選擇
對于一個測繪單位而言,數字測圖的一個重要的問題是選擇好適合于本單位使用的測繪軟件。因為往往的這個單位用起來很好的軟件,到了別的單位卻不一定適用,所以每個單位對于軟件的選擇問題應具體問題具體分析,不能人云亦云。
衡量一個成圖軟件的標準,首先要看該軟件是否適合本單位的實際情況;二要看其可操作性,是否界面友好,簡便易學等等;三要看其提供的功能是否適合于本單位。
目前各個測繪單位所使用的成圖軟件,可謂五花八門,林林總總。但基本上為兩種類型,一是系統(單位)自行開發的,另一種是由專門的測繪軟件開發商開發,而以商業目的的提供給廣大用戶使用的,也是個測繪單位用得比較多的。在本文中所講到的是后一種軟件。
現在市場上的測繪軟件用得最多的主要有三種:一是以清華山維公司與清華大學土木系聯合開發的測霸EPSW(Electronic Planetable Surveying and Mapping system)系列;二是武漢瑞得測繪自動化公司的RDMS系列;三是廣州南方測繪儀器公司與廣州開思公司的CASS系列與SCS系列。下面簡單早已下比較分析。
對于已經熟悉AUTO CAD的用戶而言,CASS系列與SCS系列是一個不錯的選折,因為它們基于AUTO CAD平臺開發的,AUTO CAD的所有功能它都可以用,而AUTO CAD則是世界上大家所共認的繪圖平臺,其編輯功能是有目共睹的[5]。
CASS與SCS的功能差不多,各有所長與所短。CASS的服務可以說是一個電話隨叫隨到,而SCS的服務在近段時間內是無法與其相提并論的。它們均提供三種作業方式:電子平板方式、原圖數字化方式及內外業一體化。再CAD的基礎上,開發了許多功能,如量算定點、圖形復制、繪制多功能復合線等。除此之外,還提供了地藉表格會制與圖紙管理等功能。對于那些即想用電子平板方式作業,又能在市內編輯成圖的單位而言,可以選它。
當然這些軟件功能會隨著時間的推移而逐步完善。對這些軟件的認識也只是本人的一管之見。
2.3.2 CASS軟件開發的背景
目前市場上的數字成圖軟件較多,CASS軟件便是其中之一。該軟件是南方測繪儀器有限公司在AutoCAD2002上開發的新一代數字化地形地籍成圖軟件, 它徹底打通了數字化成圖系統與,GIS的接口,是信息產業部門認可并普遍使用的通用軟件,可實現地形地物數據的自動輸入、處理、分析、顯示、輸出,其市場占有率較高。
2.3.3 CASS軟件安裝要求
1.硬件環境
CASS軟件安裝環境要求:CPU主頻在賽揚433以上;內存在64MB以上;硬盤存儲空間至少200MB以上的剩余空間;顯示驅動至少256色、800x600的分辨率;支持Windows的顯示適配器;鼠標或其他指點設備。
2. 軟件環境
CASS軟件的系統安裝平臺為Windows NT4.0、Windows 9X/me/2000/XP,AutoCAD2002/ AutoCAD2000/ AutoCAD R14[5]。
3. CASS的主要功能介紹
CASS的安裝應該在安裝完AutoCAD2002并運行一次后才可進行。CASS操作界面主要分為3個部分:頂部下拉菜單、右側屏幕菜單和工具條。共有11項下拉菜單,右側屏幕菜單可選擇相應地形圖圖式符號。每個菜單項均以對話框或命令行提示的方式與用戶交互應答,操作靈活方便,簡單易學。幾乎所有的CASS命令及AutoCAD2002的編輯命令都包含在頂部的下拉菜單中, 如文件管理、數據處理、圖形編輯、工程應用等命令。
2.4 本章小節
以上是本人對這幾種測量儀器及數字化測圖軟件簡單的認識及分析,還不很成熟,希望各位老師、專家提出意見與指導。
第3章 GPS(RTK)與全站儀聯合數字測圖的實施
3.1數字測圖的外業工作的實施
3.1.1作業技術依據
《全球定位系統城市測量技術規程》(CJJ 73 — 79) [6] ; 《城市測量規范》(CIJ 8 —99) [7], 《1 ∶500 , 1 ∶1000 , 1 ∶2000 地形圖圖式》; GB/ T7929 —1995 [8]。平面基準采用1954 年北京坐標系;高程基準采用1956 年黃海高程系。
3.1.2 GPS(RTK) 配合全站儀的施測過程介紹
首先要確定作業的先后流程, 該測區我們制定的作業流程圖如圖3.1:
圖3.1 RTK 配合全站儀的施測流程圖
3.1.3測區的基本情況:
本測區位于黑龍江工程學院院內,交通較為便利,測區地勢較為平坦, 測區內樹木較多給測量工作帶來一定的困難。測區布設4個已知的三等GPS控制點,作為測區平面控制的起算點。
3.1.4 控制測量
1.控制測量分類[9]
地形測圖控制測量是為測繪地形圖而建立平面和高程控制網的測量工作,內容分為基本控制(又稱等級控制)和圖根控制。基本控制是整個測區控制測量的基礎。圖根控制是直接為地形測圖服務的控制網。基本控制網的建立要根據測區面積的大小,以滿足當前需要為主,兼顧遠景發展。一般先建立控制全局的首級網,然后再根據需要加密,也可一次建立足夠密度的全面網。平面控制網可采用測角網、測邊網或邊角網,建成區多采用導線網。在已建有國家或當地平面控制網點的測區內進行測量時,應與之進行聯結。當已建網精度能滿足需要時,直接利用加密或進行必要改算后加密;當精度不能滿足需要時,可選用一點的坐標及一條邊的方位角作為起算數據建立獨立網。同樣要在整個測區內建立高程控制網,應用水準測量方法施測并與附近國家或當地水準點進行聯測,以取得統一的高程系統。
在數字測圖工作中,控制測量的工作與傳統的控制測量相比,應該更簡便,當然,在新規范中,對這一方面的要求沒有多大的改動,但根據本人的實際工作經驗及積累,有一些限制條件是可以放寬的,特別是圖根控制。
隨著GPS技術的發展成熟及全站儀的普及,三角測量現在已基本淡出了控制測量這個舞臺。所以對大多數的人員而言,無疑大大的減輕了工作強度。去掉了三角測量的種種枷鎖的限制,取而代之的是更為靈活的GPS網及導線(網)測量。在文本中,僅就圖根測量及圖根加密作一探討。
現在各測繪單位所使用的電子全站儀的精度一般為6″、3+5ppm以下,加上是電子自動讀數,所以他的實際精度要較其標準精度高,相對于光學經緯儀而言,就更具有優勢。
眾所周知,在傳統測圖中,地面點平面位置的誤差受下列誤差的影響:
1. 圖根點的展會誤差M展
2. 測定地物點的距離誤差M距
3. 測定地物點的方向誤差M刺M繪
4. 地形圖上地物點的刺點誤差M刺
5. 清繪時所造成的誤差M繪
綜上所述,地形圖上地物點平面位置的誤差可用3.1式表示:
M2物=M2展+M2距+M2向+M2刺+M2繪+M2物 (3.1)
以1:1000比例尺,最大視距為100米為例,根據經驗,有下表:
表3.1 地面點平面位置的誤差
誤差(mm)
M展
M距
M向
M刺
M繪
M物
數值
0.18
0.39
0.18
0.20
0.08
0.51
3.全站儀的簡單操作流程:
(1) 整平對中, 對中偏差不得超過1 mm ;
(2) 啟動全站儀, 進入文件管理界面, 建立文件名, 并選擇該文件在文件下存儲;
(3) 以后視點為檢核點進行檢核, 偏差在限差范圍內方可進行點收集, 否則查明原因, 符合限差要求方可采集數據;
(4) 采集碎部點數據信息。
注意事項
(1) 一個測站應一個方向觀測, 切勿盤左盤右不分;
(2) 一個測站儀器如有碰動需重新對中整平檢核;
(3) 勤建測站名以便于文件管理和查詢。
4.繪制草圖的一些技巧及注意事項
繪圖員應有一定的方向感, 有一定的圖形比例控制能力。RTK 給定圖根點后, 繪圖員在實地可先畫出大致需要采集點的草圖, 并控制好比例。繪制草圖時遵循上北下南, 要善于使用多色筆標識, 準確描述地物間拓撲關系, 使用特定的符號, 以易于內業操作。比如一塊旱地, 可以在中間畫出旱地符號(或注記文字) 即可清楚表示出地形特點。采集數據時也要注意一些技巧, 對于不便觀測的四點房, 采用兩點加寬度的采點方法, 這樣用計算機自動生成, 所得的房屋既符合精度, 又很美觀。注意一些散點的采集, 如電線桿, 采集時一塊圖一塊圖的檢查, 以免漏測。采用兩人跑尺, 可以大大的提高外業的速度, 需注意每測好一點應及時用對講機進行核實, 以保證點圖對應不出錯。
3.2數字測圖的內業工作的實施
3.2.1數據傳輸、區分及數據格式
1.RS -232C接口
盡管現在一些先進的全站儀和GPS 接收機配置了如USB 接口、IR 紅外接口和
圖3.3 數據傳輸界面
數據存儲卡等方式進行數據存儲和通訊。但將測量數據存儲在全站儀和GPS 接收機自帶的存儲器中,通過RS -232C 接口與個人計算機進行數據傳輸仍是目前使用最多的一種方法。
在使用RS -232C 標準插頭實現連接之前, 用戶必須根據已有的DTE 及DCE 的具體說明,做好匹配的調整工作。對數據線上所傳輸的數據格式、RS -232C 標準并沒有嚴格的規定。所傳輸的數據速率是多少、有無奇偶校驗位、停止位為多少、字符代碼采用多少位等問題,應由發送方與接受自行商定,達成一致的協議。大多數全站儀使用6 針接口與個人計算機進行通訊。下面我們一本次測圖所使用的萊卡TC405型全站儀為例,說明全站儀與PC機之間的連接。GPS 接收機與PC 機通訊的原理也是這樣。請注意儀器使用的接口類型與引腳定義方式要查一下,有些儀器廠商會使用非標準接口類型和定義方式, 一般會在儀器操作手冊附錄里說明。
2.數據通訊
簡單的數據通訊可以采用“超級終端來實現,“超級終端”是微軟隨操作系統一起的一個進行串口通訊的工具。操作系統是Win2000 或WinXP 的“超級終端是標準配置,在Win95 和Win98 下要用系統安裝盤安裝一下。打開方式是:開始—程序—附件— 通訊— 超級終端,打開之后會彈出對話框,讓你輸入一個名稱,輸入一個有意義的名字保存下來,這樣以后直接打開它就行了,然后是選擇通訊口,一般是COM1 或COM2 最后是選擇通訊參數,記住一定要和全站儀中通訊參數相一致。
實際上萊卡廠商提供了一起與PC機進行數據傳輸的軟件,如圖3.3,萊卡數據傳輸界面:
將萊卡TC405型全站儀與PC機連接好后,進入萊卡數據交換軟件界面,進入通
訊設置對話框,設置成與全站儀中通訊參數相一致如圖3.4;按確定鍵回到主界面,
圖3.4 通訊參數設置對話框
然后進入數據交換管理器,選擇通訊端口,然后選者要保存的數據保存到文件夾,在
圖3.5 使用萊卡軟件數據上傳
此時會彈出對話框選擇保存數據的格式。選擇的格式要與全站儀上傳的格式一致。然后現在PC機上按確定鍵,再在全站儀按確定鍵,以保證上傳的數據無遺漏。如圖3.5:
3.據格式
全站儀數據輸入PC 機后以ASCII 碼文件形式保存。可以根據數據位及提示符區分并顯示出來, 萊卡數據傳輸軟件有這一功能,一般在數據下載之后自動完成。使用萊卡數據傳輸軟件上傳的數據還不能直接應用到CASS5.1軟件上。需要將數據格式轉換成CASS5.1軟件的接受的格式。CASS5.1軟件接受的是*.dat各式的文件。數據的格式為:點號,編碼,y坐標,x坐標,高程。
圖3.6 萊卡軟件上傳的數據
圖3.7 數據轉換(a)
其數據轉換過程,首先將萊卡數據傳輸軟件下載的數據保存為*.txt格式文件如圖3.6;
圖3.7 數據轉換(b)
然后用Microsoft Excel打開文件進行編輯,將x、y數據列對換位置,以及設置列寬和小數位保留位數如圖3.7,保存為*.txt格式文件;然后打開文件進行編輯,將數據列之用“,”間隔,保存為*.dat格式文件如圖3.8:
4.南方軟件數據下載
根據南方軟件(CASS)功能可以直接將萊卡全站儀采集的數據展點到南方軟件
圖3.8 轉換后的數據
中。其主要過程為:將全站儀通過數據傳輸線與計算機連接,打開全站儀開關進入屏幕菜單選擇“通訊”功能,改變通訊設置與計算機的測量軟件匹配如圖3.9,下載全站儀數據。下載的數據直接轉換成CASS專用各式的坐標數據。
圖3.9 南方軟件數據傳輸通訊設置
3.2.2數字測圖內業工作的實施
1. 繪制坐標格網
進行CASS參數設置中的圖框設置,使用繪圖處理菜單中標準圖幅或任意圖幅命令來繪制圖廓。按要求輸入繪圖比例尺及相應圖框參數即可得到圖框。
2. 選擇測點點號定位成圖法
移動鼠標至右側屏幕菜單區之“測點點號”項,按左鍵,選中點號坐標數據文件名后,按“打開”,即可完成讀點工作。
3. 控制點展繪
點擊繪圖處理菜單中的“展野外測點點號”,點擊對應的坐標數據文件名,按“打開”,便可在屏幕上展出野外測點的點號。
圖3.10 CASS5.1界面菜單
4. 地形地物繪制
使用工具欄中的各種工具進行局部放大以便編輯,根據所測地物點的點號及野外作業時繪制的草圖,到右側屏幕區選擇相應的地形圖圖式符號來繪制地物。一般繪圖順序為:先繪各種控制點、道路、水渠、河流等,使圖有個大致輪廓;其次繪房屋、獨立地物、植被、管線設施等。為避免非法操作或突然斷電造成數據丟失,工作中要保持經常存盤的習慣。系統中所有地形圖圖式符號都是按圖層來劃分的。CASS5.1中的地形地物所在圖層是自動生成的,因此不能隨意修改圖層名,否則將導致地物編碼信息錯誤或丟失;也不可隨意修改地物的圖層屬性。
所有表示測量控制點的符號都放在“控制點”層,所有表示獨立地物的符號都放在“獨立地物”。如果需要在點號定位的過程中臨時切換到坐標定位,可以按“P”鍵,這時進入坐標定位狀態。想回到點號定位狀態時再按“P”鍵即可。陡坎、水渠、圍墻上的小觸角生成在繪圖方向的左側。出現錯向時可用線型換向功能修改。
5. 高程點展繪
點擊“繪圖處理”菜單下的“展高程點”,彈出數據文件對話框,選取目標文件,按“打開”,命令區提示:“注記高程點的距離(m):”直接回車,表示不對高程點注記進行取舍,全部展出來。具體情況根據繪圖比例尺及地形可選30~40m。再將標高注記與地形地物相重疊的移動一下,使顯示更清楚。
繪等高線必須先將野外測的高程點建立數字地面模型(DTM),然后在數字地面模型上由計算機自動勾繪出高精度等高線。
6. 文字注記
注記文字,用鼠標點擊右側菜單的“文字注記”項,依提示輸入文字高度、注記內容、注記位置,完成文字注記。關閉“ZDH”圖層,對圖紙進行全面整飾,繪圖工作即可完成。
7. 繪圖輸出
點擊“文件”菜單下的“繪圖輸出”項,對“打印設備”“打印設置”各項選擇設置后,可通過“完全預覽”和“部分預覽”查看出圖效果,滿意后按“確定”即可出圖。
3.2.3內業操作應注意的問題:
下載外業數據文件, 用Excel 或Word 處理成符合CASS 的格式文件, 注意保存時應為*.dat 格式。在CASS5.1環境下展點。內業處理時, 是否擬合看情況而定, 兩點距離較大時擬合效果較好, 兩點距離較小時擬合會使繪出圖形不遵循原來的地物、地貌, 差異很大, 需靈活采用。當然內業者應熟練掌握AutoCAD 的基本功, 對CASS 中每種地物、地貌能迅速調用, 確保每天所測的外業當天內業能處理完成, 發現問題及時與外業聯系解決。
3.3對數字地圖進行質量檢查和質量評定
3.3.1數字化測圖質量評價的內容與特點
根據數字地圖的特點和用途;衡量其質量的指標體系應該在傳統紙質地圖的基礎上加入新的內容,下面分析數字化測圖質量評價的內容與特點。
1. 數字化測圖質量評價的內容
數字化測圖實現了地形圖的數字化、信息化,測量結果是以計算機可識別的數字代碼系統來反映地表各類地理屬性特征。因此,數字化測圖質量評價除與模擬法測圖質量評價具有相同的評價內容外,還具有其特有的評價內容。主要包括:
(1)地物分層的合理性;
(2)地物屬性代碼選擇的正確性;
(3)閉合圖形的封閉性;
(4)結點的匹配精度;
(5)圖形拓撲關系的正確性;
(6)地物各層是否有重復的要素;
(7)地物各層是否有混層現象;
(9)各層顏色選擇的正確性;
(10)數據文件名稱,數據格式,數據組織的正確、完整性;
2.數字化測圖質量評價的特點
數字化測圖是利用先進的儀器,通過測量獲取可供傳輸、處理、共享的數字地形信息,即獲取以計算機磁盤為載體的數字地形圖。數字化測圖實現了測量的高精度, 測量精度在成圖過程中無損失,利用計算機軟件成圖,可以做到符號、文字、注記等符合規范要求,等高線通過自動擬合處理光滑美觀,實現了圖面的規范化。數字化測圖質量評價的特點:
(1)數字化測圖依據野外記錄室內編輯成圖,容易發生漏測、記錯現象,數字地形圖的質量檢查應重點檢查地物要素測量是否齊全,屬性注記是否與實際相符合。
(2)等高線的勾繪依據野外測點的分布,對于經驗不豐富的立尺人員,有些地貌關鍵點位容易被漏測,易造成等高線失真,數字化測圖的質量評價應重點檢查等高線是否反映客觀實際。
(3)數字化測圖實現了信息分層管理,不同層顏色不同,數字化測圖的質量評價應重點檢查數字地圖分層是否合理,地圖信息是否有混層交叉現象,地形要素在同層是否有重復要素。
(4)數字化測圖利用先進的儀器進行測量,測量精度高,測點點位精度在數字化測圖的質量評價中則是處于次要地位,但仍是必要的檢查內容。
(5)數字化測圖是GIS數據庫的重要信息源,拓寬了地形圖的應用范圍.因此,數字化測圖的質量評價應重點檢查閉合圖形的封閉性、結點的匹配精度、圖形拓撲關系的正確性。
(6)數字化測圖是以計算機可識別的數字代碼系統來反映地表各類地理屬性特征,數字化測圖的質量評價應重點檢查地物的屬性代碼選擇的正確性,數據格式、數據組織的正確性。
(7)數字化測圖的圖幅分幅是計算機自動完成的,接邊精度高,在數字化測圖質量評價中處于次要地位,但圖名、圖幅接合表仍是必要檢查內容。
(8)數字化測圖改變了傳統的測量模式,允許圖根控制和碎部測量同時進行;GIS測量技術的使用,也改變了傳統的控制測量模式與要求,因此,控制測量在數字地形圖質量檢查中處于次要地位,但仍是必要的檢查內容。
總之,數字化測圖改變了人們對傳統地形圖的認識。因此,數字化測圖質量評價應根據數字化測圖質量評價的特點,建立邏輯嚴密、易于操作、科學合理的質量評價指標體系。
3.3.2數字化測圖質量評價指標體系
1. 影響數字化測圖質量評價的因素分析
衡量數字化地形圖產品質量的指標主要有位置精度、屬性精度、邏輯一致性、完備性等,這些指標可作為一級評價指標。而每一個一級評價指標又由許多指標決定其好壞,為了便于建立定量化的數字化地形圖評價模型,把一級評價指標再進一步細分,形成二級評價指標。
數字化測圖的外業、內業的工作內容和工作程序決定了數字化測圖質量評價工作是一項技術性強、影響因素多的工作。雖然影響數字化測圖產品的因素眾多,其中有些因素是主要因素,有些是次要因素,評價數字化測圖產品的質量不可能考慮全部的影響因素,只需分析影響數字化測圖質量的可能存在的因素,然后進行分析,綜合取舍,合理確定評價指標,使其具有代表性和可操作性,這是非常重要的。
根據數字化測圖的工作內容與特點,從7個方面(見表3.1列出影響數字化測圖產品質量的可能因素,共計41項(略)可能有些因素還未列出, 如果在數字化地形圖評價時全部考慮這些影響因素,指標權重難以確定,為減少確定評價指標過程中主觀因素的影響,需要利用層次分析法進一步篩選評價指標,以便建立科學合理、便于操作的數字化測圖質量評價指標體系[11]。
表3.1 數字化測圖質量評價指標體系
第三層
評價指標
第二層
評價指標
第三層
評價指標
C1 工作基礎
B1 技術實力
A1 是否具有測繪許可證,測繪許可證的等級
A2 投入生產項目的技術人員職稱結構
A3 投入生產項目的儀器設備的數量、先進性
B2 技術準備
A4 測量技術方案的設計是否合理
A5 采用的作業方法是否先進
A6 技術保障措施"后勤保障措施是否到位
C2 產品質量
B3 資料的規范性
A7 控制測量的資料是否完整"齊全
A8 規定上交成果文檔資料的正確"規范性
A9 儀器檢驗資料是否齊全,是否符合有關規范的規定
A10 數據文件名稱"數據格式"數據組織的正確"完整性
A11 測量工作技術總結報告的完整性
A12 自檢報告資料的完整性
B4 數學精度
A13 數學基礎
A14 平面控制測量成果精度
A15 高程控制測量成果精度
A16 地物點相對臨近圖根點的精度
A17 地物點之間的相對位置精度
B5 屬性精度
A18 地物測繪取舍是否合理
A19 地物屬性代碼選擇是否正確
A20 地物符號使用是否規范
A21 等高線是否反映地面實際地形
A22 地形點的密度是否滿足要求
B6 邏輯精度
A23 地物的分層是否合理!是否有混層現象
A24 閉合圖形的封閉精度
A25 結點匹配精度
A26 圖形拓撲關系的正確性
A27 地物各層是否有重復的要素
B7 整飾質量
A28 圖廓整飾質量
A29 屬性注記質量
A31 線劃質量
A32 符號質量
經過系統分析,數字化測圖質量評價指標總計32項,按評價指標的相近性綜合成七大類別,其中技術實力、技術準備是反映測繪生產單位工作基礎的指標;資料的完整性、數學精度、屬性精度、邏輯精度、整飾質量是反映測繪成果的指標。為便于確定指標權重和建立模糊綜合評價模型,將評價因素分層,建立多指標多層次的評價指標體系。具體評價指標體系見表3.1為方便起見,第一層的評價指標用A編號,第二層的評價指標用B編號,第三層的評價指標用C編號。
本文建立的數字化測圖評價指標體系,主要分兩大模塊,即工作基礎評價和產品質量評價。這兩個模塊的評價可以獨立進行,也可以綜合評價,根據實際需要確定。工作基礎模塊可用于測繪工程招標階段對生產單位資格的評價,在驗收階段用來衡量
測繪生產單位的綜合實力,作為對生產單位提供數字化測繪產品質量評價的參考。表3.1中的多指標多層次數字化測圖質量評價指標體系,全面地反映了數字化測圖的特點,邏輯嚴密,具有較強的可操作性、實用性。
4. 數字成圖、質量檢查與評定
在本次數字測圖基本完成后,又對此次測圖的2/3的地物、地貌點與圖根控制點進行了聯測,采集的數據如圖3.11原數據相比較90%以上都符合限差要求。少數地物、地貌有明顯錯誤或粗差經過休測后,都已經滿足了要求。
圖3.11 檢核時采集的數據
3.4本章小節
從工程的各個環節及達到的作業效果可以看出, 內外業一體化數字化測圖工程,由于充分應用高新技術,使得各級控制網的成果精度、數字化地形圖的成圖精度以及整個工程的作業效率都優于常規的成圖方法。總結起來有以下特點:
(1)將傳統的逐級控制方法與現代測量技術手段相結合,既保證了成果的精度,又保證了作業的高效率。
(2)即用即測,急用先測,邊測邊用,高科技成果即刻轉化為生產力,為城市規劃提供了科學可靠的保證。
(3)先進的測量技術在諸多方面打破了傳統的觀念與局限,使整個作業流程方便快捷,作業人員得心應手。采用的全站儀操作簡便,觀測速度快,精度高,可自由設站,靈活采用多種方法測量碎部點。作業人員根據各自的作業經驗,針對實地狀況,采用不同的方式制作草圖,所繪草圖有詳有略;作業小組可相對成片作業,內部不存在接邊問題;計算機制圖編輯,方便快捷,隨意操作,刪除改動不留“痕跡”。
(4)高科技數字化產品在今后的應用、管理、更新、維護、交換以及資料共享等方面,具有無限的生命力,精度永遠保持不變,可謂一勞永逸,充分體現出1圖多用的優勢,避免了重復測量,節約了資金。由于這項工程采用與國家平面和高程系統統一的基礎控制系統, 1 /500的大比例尺具有足夠的精度,因而其成果為以后的進一步應用打下了堅實的基礎。而且,數字化圖形數據可隨時更新,修改方便,隨著網絡技術的發展,可進行交換和共享,是一筆寶貴的技術、資源財富。
(5)計算機輔助制圖精度高、速度快,線劃圓潤流暢,可單色或彩色顯示輸出,具有良好的視覺效果。
(6)打破了內外業的生產界線,從首級控制到最終成圖,實行一體化作業,大大減輕了室外作業的強度,縮短了成圖周期。
(7)打破了分級布網、逐級控制的原則。1個測區可1次性整體布網、整體平差,控制網形可以任意混合,所需控制點數目比傳統白紙測圖大大減少,圖根控制的加密可與碎部測量同時進行。
(8)碎部點的記錄要求具有特定的格式,這種格式能被數字測圖軟件所識別,能和數據庫的建立統一起來;碎部點測量可較多地應用自由設站的方法建立測站點,確定碎部點坐標的方法除極坐標方法外,還可靈活采用方向交會法、距離交會法、直角偏距法、導線法、對稱點法等諸多方法。根據測區情況,可采用無碼作業和編碼作業。
(9)碎部測量時不受圖幅邊界的限制,外業可不分幅作業,由內業成圖時自動進行分幅與接邊處理。
結論
“GPS(RTK)與全站儀聯合作業”方法充分地體現了現代測量產品設計理念———協同作業。使用一個軟件包、在一個項目中,同時完成對RTK 數據、后處理的GPS 數據和常規測量數據進行處理。這樣,用戶在組織施工時,有很大的自由空間,可以是動態,也可以是靜態;可以是GPS ,也、可以是全站儀。而對所有這些數據的處理,只需在后處理軟件中就可一次完成。“聯合作業”后處理軟件的獨特設計,使數據的導入、檢查和處理工作,既能做到高效快捷,又能保證質量可靠。數據的存儲,采用可視化類數據庫文件格式,用戶可以很方便的查詢、編輯或生成各種報告。“聯合作業”方法繼保證了測量成果準確性、可靠性,又結合了GPS 與全站儀作業各自的靈活性,是一種較新的取長補短作業方法,使工作更高效可靠。大家可以試一試。
綜上所述,采用RTK與全站儀聯合進行數字化測圖,它不僅可以減少作業人員和作業工序,而且可以提高采集數據的速度和質量,從而有效地提高了工作效率。因此,它是一種行之有效的測圖方法。
參考文獻
[1]高井祥.數字測圖原理與方法[M].徐州:中國礦業大學出社,2001.
[2]尤秋陽.GPS RTK技術在地籍測量中的應用[M].武漢:測繪信息與工程出版社, 2003.
[3]萊卡測繪儀器有限公司.徠卡TPS400系列全站儀操作手冊[Z].哈爾濱:萊卡哈爾濱服務有限公司,2000.
[6]廣州南方測繪儀器公司與廣州開思公司.CASS軟件使用說明[Z].廣州:廣州開思公司,2002.
[5]邵俊昌,李旭東.Auto CAD object ARX 2000開發技術指南[Z].北京:電子工業出版社, 2000.
[6]國家質量技術監督局.全球定位系統(GPS)測量規范(GB/T18341-2001)[S].北京:北京測繪出版社,2001.
[7]國家質量技術監督局.城市測量規范(CIJ 8-99)[S].北京:北京測繪出版社,1958.
[8]國家質量技術監督局. 1:500 1:1000 1:2000 地形圖圖式(GB/T7929-1995)[Z].北京:北京測繪出版社,1995.
[9]同濟大學大地測量教研室,武漢測繪科技大學控制測量教研室.控制測量(上冊)[M] 北京:北京測繪出版社,1988.
【關鍵詞】古建筑 數字化 保護 三維建模
一、引言
當今世界都很重視人類文化遺產的傳承與保護,而古建筑都是人類重要的文化遺產之一,它們見證了人類歷史的發展過程。然而,隨著時間的流逝,歲月風雨的洗禮,人為的破壞因素等,使得這些古建筑正在逐漸消失。特別是現如今城鎮化水平的加速提高,對古建筑破壞將更加嚴重。必須采取一系列措施和藝術手法對古建筑進行復原與保護,所以如何運用高科技手段來保護古建筑文化遺產,是當下政府應該非常重視和關心的事情。數字化復原技術在對古建筑的保護、展示、修復和復原等過程中就起到了非常重要的作用,它為古建筑文化遺產的復原和傳承提供了全新的平臺。
二、數字化保護系統的總體設計
古建筑保護系統的設計與開發,為古建筑數字化保護提供人財物力損失最小的方案以及相關的技術服務。該系統結合數據庫技術、數據采集與處理技術、監測分析以及保護評價技術等,進行古代建筑數字化保護系統的設計開發。其中數據庫的建立主要有空間庫和結構屬性數據庫兩部分;數據采集與處理分為二維和三維數據采集與處理;并利用環境監測與分析對古建筑的保護進行實時評價與分析,達到立體式、全方位、時時的保護。系統的主要模塊及功能結構如圖1所示。
三、數據的采集與處理
(一)研究對象概況
本文以位于浙江省浦江縣的全國重點文物保護單位-江南第一家的“牌坊”為研究對象,將計算機圖形學、圖像處理、計算機視覺等學科與建筑工程學科相結合,將計算機領域當前主要的二維數字化及三維建模技術的最新研究成果,應用于古建筑的數字化保護,并為珍貴古建筑、遺跡等文物的修繕和復原工作提供更加準確的工程數據。
(二)二維數據采集與處理
利用計算機圖形學、圖像處理、虛擬現實等信息領域最新發展技術,將現有保存下來的文物進行數據采集,如進行照片的拍攝,利用傳統的測量工具進行測量,再結合計算機圖形學軟件AutoCAD將測繪出來的數據進行繪制。如圖2所示,就是某一牌坊的CAD圖紙。
(三)三維數據采集與處理
將古建筑測繪的信息包含于三維模型中,數字三維模型比二維圖形包含更豐富的信息,更接近人們的日常生活空問,能夠精確、形象、豐富地記錄建筑物的外形外觀、建筑風格、內部結構等。三維數據采集的常用方法有“三維點云數據采集”。對工程圖進行三維重建主要是指從工程圖所提供的二維信息中提取三維信息,然后進行處理;根據繪制的牌坊標注草圖,在AutoCAD中繪制出牌坊的正立面圖、左立面圖、背立面圖以及右立面圖的主要輪廓,并且將所有線條設為同一種顏色,以便于在3DMAX中編輯處理。
(1)三維點云數據采集。點云數據在采集過程中受到系統和環境等因素的影響,需要借助后處理軟件,進行去噪、平滑等操作后才能轉化為有用的空間信息,為后面的曲面重構做準備。實驗過程中采用軟件對預處理后的點云數據進行三維建模,構造相關特征曲線,再根據所繪制的曲線繪制網格、繪制曲面等。具體實驗流程如圖3所示
(2)三維激光掃描數據的處理。傳統的記錄古建筑內部大木結構的方法,是用拍照和拉皮尺進行量測和記錄。但是一般古建筑的大木結構比較復雜,使用傳統方法獲得大木結構的實體曲面模型是一件相當困難和耗時的工作。而運用三維激光雷達掃描技術,能夠在很大程度上輕松解決這些技術難點。激光掃描儀通過運用激光束從被發射到激光束到達被測物體再被反射回掃描儀的時間差,得到掃描儀到被測物體的距離,再運用連續轉動的用來反射脈沖激光的鏡子的角度值得到被測物體的三維坐標。然后利用三維點云數據和相應的建模軟件制作出三角網模型,最后利用這兩種模型來提取古建筑的線性特征。用三角網模型來制作平面圖剖面圖和立面圖。
(3)古建筑的三維模型重建。要將經過掃描得到的點云轉化為通常意義上的三維模型,系統軟件至少應該具備以下條件:常用的三維模型組件(如柱體、球體、管狀體、長方體等立體幾何圖形);與模型組件相對應的點云匹配算法;幾何體表面TI N 多邊形算法。當進行三維建模時,可利用系統軟件提供的自動分段處理工具從掃描的點云圖中抽取出一部分,共同組成一個物體或物體的一部分點,以進行自動匹配處理,但這種自動匹配方式的處理只適用于那些與軟件中所包含的常用幾何形體相一致的目標實體組件。得到物體真實的三維立體影像。圖4為建模、渲染后某一牌坊的效果圖。
四、數據庫的建立
(一)古建筑數據庫的建立
古建筑信息是空間位置信息與屬性信息的有機結合,一個完善的古建筑數據庫必須以這兩種信息源為基礎,建立空間數據庫和屬性數據庫。前者有激光掃描圖、二維平面圖、照片、以及三維建模模型等空間數據組成;后者是空間數據的對應屬性,如歷史相關文獻記載、描述、統計數據及與相應的建筑構成相關的材料、尺寸、類型等。
(二)古建筑空間數據庫
空間數據適合于計算機存儲、管理、處理的邏輯結構,是將圖形數據、影像數據、統計數據等資料按一定的數據結構轉換為適合計算機存儲和處理的形式。主要由柵格數據和矢量數據組成,柵格數據主要包括激光掃描圖等。矢量數據是利用點、線、面等幾何要素精確表達建筑物的邊界和內部體元;矢量數據主要包括由激光掃描得到的點云數據、三維模型等。
(三)古建筑屬性數據庫
根據古建筑保護工作的實際需要,本研究涉及的屬性包括與空間數據相應的屬性信息,如建筑的材料、幾何構成、建筑面積、地理位置等;又包括其他的屬性信息,如歷史年份信息、相關的文化背景等。
五、古建筑監測分析
對古建筑需要進行環境監測與分析,通過周期性的測量,為數據庫管理系統提供信息更新及評估依據。主要完成對古建筑所處環境以及古建筑構件、營造技術的監測與分析,擔負古建筑復原方案的確定與實現,是整個系統的重要核心。古建筑室內外物理環境數據監測體系是進行可持續古建筑保護研究的基礎和首要條件。環境監測功能應實現對太陽日照、風速風向、空氣污染等情況的計算與分析。而對古建筑構件、營造技術或方式的監測與分析,就是在地理信息系統提供的虛擬環境中,根據已建立的數字化模型,對歷史建筑構成進行比較、分析,并將模型數據與歷史數據進行融合,建立古建筑修復評估體系,對細部和裝飾殘缺的或已經破壞的古建筑進行復原。
六、結語
總之:古建筑不僅有很高的歷史價值、藝術價值,也有很高的科學價值,是研究歷史科學的實物例證,也是新建筑設計和新藝術創作的重要借鑒,許多古建筑、園林等都是文化旅游的重要場所。我國在古建筑數字化保護方面還比較落后,還未能充分地體現現代技術對古建筑保護和開發的巨大作用,進行這方面的探索和研究,不僅能夠為古建筑、遺跡等文物的修繕和復原工作提供精細的、準確的、工程化的基礎數據;減少人們對實物接觸的同時,增加人們對細節的了解;對古建筑數字化及三維建模技術的研究,是一件功在當代、利在千秋的事業。
參考文獻:
[1]王茹,古建筑數字化及三維建模關鍵技術研究.西北工業大學博士學位論文,2010.
[2]賀斌,劉洋,張大為.三維激光掃描在古建筑物修繕中的應用.吉林地質,2009.
[3]王京衛,周亞飛,孟祥國-基于3DGIS的古建筑物的三維數字化保存研究.山東建筑大學學報,2011.
[4]周華偉,朱大明,瞿華鎣.三維激光掃描技術與GIS在古建筑保護中的應用.工程勘察,2011.
[5]范張偉,邢昱.基于數字化技術的古建筑保護研究.北京測繪,2010.
[6]張笑楠.河南地區明清會館建筑及其室內環境研究[D].南京林業大學研究生博士論文,2007.